Rational design of new phases of tin monosulfide by first-principles structure searches


Tin monosulfide (SnS), which is composed of earth-abundant elements, holds promise as useful high-performance solar absorber and thermoelectric material. In addition to the ground-state Pnma phase, a series of metastable phases in different crystalline structures have been reported experimentally or theoretically, yet the phase stability diagrams remain elusive. In this article, we provide a comprehensive materials design study of new phases of SnS using first-principles global optimization structure search calculations. We find that the two-dimensional layered phases are generally more energetically favored than the three-dimensional connected phases. In addition, we discover several new phases with comparable energetics. Four lower-energy phases show clear phonon stabilities evidenced by an absence of imaginary modes. The electronic band structures, carrier transport properties, and absorption spectra of the newly discovered phases are investigated and discussed toward potential applications for solar cells and thermoelectric devices.

This is a preview of subscription content, log in to check access.


  1. 1

    D. Vamvuka, Int. J. Energy Res. 35, 835 (2011).

    Article  Google Scholar 

  2. 2

    C. Zou, Q. Zhao, G. Zhang, and B. Xiong, Nat. Gas Ind. B 3, 1 (2016).

    Article  Google Scholar 

  3. 3

    C. McGlade, and P. Ekins, Nature 517, 187 (2015).

    ADS  Article  Google Scholar 

  4. 4

    M. Lenzen, Energy Convers. Manage. 49, 2178 (2008).

    Article  Google Scholar 

  5. 5

    C. Zarfl, A. E. Lumsdon, J. Berlekamp, L. Tydecks, and K. Tockner, Aquat. Sci. 77, 161 (2015).

    Article  Google Scholar 

  6. 6

    B. Lehner, G. Czisch, and S. Vassolo, Energy Policy 33, 839 (2005).

    Article  Google Scholar 

  7. 7

    S. A. Sherif, F. Barbir, and T. N. Veziroglu, Sol. Energy 78, 647 (2005).

    ADS  Article  Google Scholar 

  8. 8

    R. D. Schaller, and V. I. Klimov, Phys. Rev. Lett. 92, 186601 (2004).

    ADS  Article  Google Scholar 

  9. 9

    P. V. Kamat, J. Phys. Chem. C 111, 2834 (2007).

    Article  Google Scholar 

  10. 10

    W. He, G. Zhang, X. Zhang, J. Ji, G. Li, and X. Zhao, Appl. Energy 143, 1 (2015).

    ADS  Article  Google Scholar 

  11. 11

    P.C. Huang, J. L. Huang, S. C. Wang, M. O. Shaikh, and C. Y. Lin, Thin Solid Films 596, 135 (2015).

    ADS  Article  Google Scholar 

  12. 12

    R. Guo, X. Wang, Y. Kuang, and B. Huang, Phys. Rev. B 92, 115202 (2015), arXiv: 1505. 02601.

    ADS  Article  Google Scholar 

  13. 13

    S. Di Mare, D. Menossi, A. Salavei, E. Artegiani, F. Piccinelli, A. Kumar, G. Mariotto, and A. Romeo, Coatings 7, 34 (2017).

    Article  Google Scholar 

  14. 14

    J. R. Brent, D. J. Lewis, T. Lorenz, E. A. Lewis, N. Savjani, S. J. Haigh, G. Seifert, B. Derby, and P. O'Brien, J. Am. Chem. Soc. 137, 12689 (2015).

    Article  Google Scholar 

  15. 15

    P. Sinsermsuksakul, L. Sun, S. W. Lee, H. H. Park, S. B. Kim, C. Yang, and R. G. Gordon, Adv. Energy Mater. 4, 1400496 (2014).

    Article  Google Scholar 

  16. 16

    P. Tang, H. Chen, F. Cao, G. Pan, K. Wang, M. Xu, and Y. Tong, Mater. Lett. 65, 450 (2011).

    Article  Google Scholar 

  17. 17

    C. Wang, Y. Chen, J. Jiang, R. Zhang, Y. Niu, T. Zhou, J. Xia, H. Tian, J. Hu, and P. Yang, RSC Adv. 7, 16795 (2017).

    Article  Google Scholar 

  18. 18

    S. Hao, V. P. Dravid, M. G. Kanatzidis, and C. Wolverton, APL Mater. 4, 104505 (2016).

    ADS  Article  Google Scholar 

  19. 19

    F. Ke, J. Yang, C. Liu, Q. Wang, Y. Li, J. Zhang, L. Wu, X. Zhang, Y. Han, B. Wu, Y. Ma, and C. Gao, J. Phys. Chem. C 117, 6033 (2013).

    Article  Google Scholar 

  20. 20

    E. Segev, U. Argaman, R. E. Abutbul, Y. Golan, and G. Makov, CrystEngComm 19, 1751 (2017).

    Article  Google Scholar 

  21. 21

    R. E. Abutbul, A. R. Garcia-Angelmo, Z. Burshtein, M. T. S. Nair, P. K. Nair, and Y. Golan, CrystEngComm 18, 5188 (2016).

    Article  Google Scholar 

  22. 22

    R. E. Abutbul, E. Segev, L. Zeiri, V. Ezersky, G. Makov, and Y. Golan, RSC Adv. 6, 5848 (2016).

    Article  Google Scholar 

  23. 23

    P. K. Nair, A. R. Garcia-Angelmo, and M. T. S. Nair, Phys. Status Solidi A 213, 170 (2016).

    ADS  Article  Google Scholar 

  24. 24

    Y. Sun, Z. Zhong, T. Shirakawa, C. Franchini, D. Li, Y. Li, S. Yunoki, and X. Q. Chen, Phys. Rev. B 88, 235122 (2013), arXiv: 1308. 5657.

    ADS  Article  Google Scholar 

  25. 25

    Y. Wang, J. Lv, L. Zhu, and Y. Ma, Comput. Phys. Commun. 183, 2063 (2012), arXiv: 1205. 2264.

    ADS  Article  Google Scholar 

  26. 26

    L. Zhu, H. Wang, Y. Wang, J. Lv, Y. Ma, Q. Cui, Y. Ma, and G. Zou, Phys. Rev. Lett. 106, 145501 (2011).

    ADS  Article  Google Scholar 

  27. 27

    Q. Li, D. Zhou, W. Zheng, Y. Ma, and C. Chen, Phys. Rev. Lett. 110, 136403 (2013).

    ADS  Article  Google Scholar 

  28. 28

    J. Lv, Y. Wang, L. Zhu, and Y. Ma, Phys. Rev. Lett. 106, 015503 (2011).

    ADS  Article  Google Scholar 

  29. 29

    Y. Zhang, H. Wang, Y. Wang, L. Zhang, and Y. Ma, Phys. Rev. X 7, 019903 (2017).

    Google Scholar 

  30. 30

    Y. Wang, J. Lv, L. Zhu, and Y. Ma, Phys. Rev. B 82, 094116 (2010), arXiv: 1008. 3601.

    ADS  Article  Google Scholar 

  31. 31

    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    ADS  Article  Google Scholar 

  32. 32

    S. Grimme, J. Comput. Chem. 27, 1787 (2006).

    Article  Google Scholar 

  33. 33

    K. Lee, É. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101 (2010), arXiv: 1003. 5255.

    ADS  Article  Google Scholar 

  34. 34

    A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, J. Chem. Phys. 125, 224106 (2006).

    ADS  Article  Google Scholar 

  35. 35

    F. Tran, and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).

    ADS  Article  Google Scholar 

  36. 36

    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    ADS  Article  Google Scholar 

  37. 37

    A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008).

    ADS  Article  Google Scholar 

  38. 38

    G. K. H. Madsen, and D. J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    ADS  Article  Google Scholar 

  39. 39

    M. Gajdos, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 73, 045112 (2006).

    ADS  Article  Google Scholar 

  40. 40

    Y. Li, and D. J. Singh, Phys. Rev. Mater. 1, 075402 (2017), arXiv: 1711. 08022.

    Article  Google Scholar 

  41. 41

    Y. Li, D. J. Singh, M. H. Du, Q. Xu, L. Zhang, W. Zheng, and Y. Ma, J. Mater. Chem. C 4, 4592 (2016).

    Article  Google Scholar 

  42. 42

    Q. Xu, Y. Li, L. Zhang, W. Zheng, D. J. Singh, and Y. Ma, Chem. Mater. 29, 2459 (2017).

    Article  Google Scholar 

  43. 43

    S. B. Zhang, S. H. Wei, A. Zunger, and H. Katayama-Yoshida, Phys. Rev. B 57, 9642 (1998).

    ADS  Article  Google Scholar 

  44. 44

    R. E. Brandt, V. Stevanovic, D. S. Ginley, and T. Buonassisi, MRC Commun. 5, 265 (2015).

    Article  Google Scholar 

  45. 45

    R. Herberholz, V. Nadenau, U. Rühle, C. Köble, H. W. Schock, and B. Dimmler, Sol. Energy Mater. Sol. Cells 49, 227 (1997).

    Article  Google Scholar 

  46. 46

    J. Vidal, S. Lany, M. d'Avezac, A. Zunger, A. Zakutayev, J. Francis, and J. Tate, Appl. Phys. Lett. 100, 032104 (2012).

    ADS  Article  Google Scholar 

  47. 47

    D. Yang, J. Lv, X. Zhao, Q. Xu, Y. Fu, Y. Zhan, A. Zunger, and L. Zhang, Chem. Mater. 29, 524 (2017).

    Article  Google Scholar 

  48. 48

    X. G. Zhao, D. Yang, Y. Sun, T. Li, L. Zhang, L. Yu, and A. Zunger, J. Am. Chem. Soc. 139, 6718 (2017).

    Article  Google Scholar 

  49. 49

    X. G. Zhao, J. H. Yang, Y. Fu, D. Yang, Q. Xu, L. Yu, S. H. Wei, and L. Zhang, J. Am. Chem. Soc. 139, 2630 (2017).

    Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Jin-Rui Wang or LiJun Zhang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, Y., Pang, Y. et al. Rational design of new phases of tin monosulfide by first-principles structure searches. Sci. China Phys. Mech. Astron. 61, 107311 (2018). https://doi.org/10.1007/s11433-018-9207-9

Download citation


  • tin monosulfide
  • photovoltaic
  • anisotropic
  • effective masses