Advertisement

Quantum nonlocality can be distributed via separable states

  • Li-Jun Zhao
  • Yu-Min Guo
  • XianQing Li-Jost
  • Shao-Ming Fei
Letter to the Editor
  • 42 Downloads

References

  1. 1.
    H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, Rev. Mod. Phys. 82, 665 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    V. Scarani, and N. Gisin, Phys. Rev. Lett. 87, 117901 (2001)ADSCrossRefGoogle Scholar
  3. 2a.
    A. Acín, N. Gisin, and V. Scarani, Quant. Inf. Comput. 3, 563 (2003).Google Scholar
  4. 3.
    A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefGoogle Scholar
  5. 3a.
    J. Barrett, L. Hardy, and A. Kent, Phys. Rev. Lett. 95, 010503 (2005)ADSCrossRefGoogle Scholar
  6. 3b.
    A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, Phys. Rev. Lett. 98, 230501 (2007).ADSCrossRefGoogle Scholar
  7. 4.
    N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Rev. Mod. Phys. 86, 419 (2014).ADSCrossRefGoogle Scholar
  8. 5.
    H. X. Meng, H. X. Cao, and W. H. Wang, Sci. China-Phys. Mech. Astron. 59, 640303 (2016).CrossRefGoogle Scholar
  9. 6.
    H. X. Meng, H. X. Cao, W. H. Wang, L. Chen, and Y. Fan, Sci. China-Phys. Mech. Astron. 59, 100311 (2016).CrossRefGoogle Scholar
  10. 7.
    F. G. Deng, B. C. Ren, and X. H. Li, Sci. Bull. 62, 46 (2017).CrossRefGoogle Scholar
  11. 8.
    Y. B. Sheng, and L. Zhou, Sci. Bull. 62, 1025 (2017).CrossRefGoogle Scholar
  12. 9.
    Z. Wang, C. Zhang, Y. F. Huang, B. H. Liu, C. F. Li, and G. C. Guo, Sci. Bull. 61, 714 (2016).CrossRefGoogle Scholar
  13. 10.
    T. S. Cubitt, F. Verstraete, W. Dür, and J. I. Cirac, Phys. Rev. Lett. 91, 037902 (2003).ADSCrossRefGoogle Scholar
  14. 11.
    A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).ADSCrossRefGoogle Scholar
  15. 12.
    J. S. Bell, Physics 1, 195 (1964).CrossRefGoogle Scholar
  16. 13.
    J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).ADSCrossRefGoogle Scholar
  17. 14.
    N. Gisin, Phys. Lett. A 154, 201 (1991).ADSMathSciNetCrossRefGoogle Scholar
  18. 15.
    N. Gisin, and A. Peres, Phys. Lett. A 162, 15 (1992).ADSMathSciNetCrossRefGoogle Scholar
  19. 16.
    S. Popescu, and D. Rohrlich, Phys. Lett. A 166, 293 (1992).ADSMathSciNetCrossRefGoogle Scholar
  20. 17.
    J. L. Chen, C. Wu, L. C. Kwek, and C. H. Oh, Phys. Rev. Lett. 93, 140407 (2004).ADSMathSciNetCrossRefGoogle Scholar
  21. 18.
    M. Li, and S. M. Fei, Phys. Rev. Lett. 104, 240502 (2010).ADSMathSciNetCrossRefGoogle Scholar
  22. 19.
    S. Yu, Q. Chen, C. Zhang, C. H. Lai, and C. H. Oh, Phys. Rev. Lett. 109, 120402 (2012).ADSCrossRefGoogle Scholar
  23. 20.
    I. Pitowsky, Math. Program. 50, 395 (1991).MathSciNetCrossRefGoogle Scholar
  24. 21.
    N. Alon and A. Naor, in: Approximating the Cut-norm via Grothendieck’s Inequality: STOC’ 04 Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Computing, June 13-16, 2004, Chicago, IL, USA (ACM Press, New York, 2004), pp. 72–80.Google Scholar
  25. 22.
    B. Hua, M. Li, T. Zhang, C. Zhou, X. Li-Jost, and S. M. Fei, J. Phys. A-Math. Theor. 48, 065302 (2015).ADSCrossRefGoogle Scholar
  26. 23.
    F. Verstraete, and M. M. Wolf, Phys. Rev. Lett. 89, 170401 (2002).ADSCrossRefGoogle Scholar
  27. 24.
    R. Horodecki, P. Horodecki, and M. Horodecki, Phys. Lett. A 200, 340 (1995).ADSMathSciNetCrossRefGoogle Scholar
  28. 25.
    R. Horodecki, Phys. Lett. A 210, 223 (1996).ADSMathSciNetCrossRefGoogle Scholar
  29. 26.
    F. Hirsch, M. T. Quintino, J. Bowles, and N. Brunner, Phys. Rev. Lett. 111, 160402 (2013).ADSCrossRefGoogle Scholar
  30. 27.
    C. Palazuelos, Phys. Rev. Lett. 109, 190401 (2012).ADSCrossRefGoogle Scholar
  31. 28.
    T. Vértesi, and N. Brunner, Nat. Commun. 5, 5297 (2014).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Li-Jun Zhao
    • 1
  • Yu-Min Guo
    • 1
  • XianQing Li-Jost
    • 2
    • 3
  • Shao-Ming Fei
    • 1
    • 2
  1. 1.School of Mathematical SciencesCapital Normal UniversityBeijingChina
  2. 2.Max-Planck-Institute for Mathematics in the SciencesLeipzigGermany
  3. 3.School of Mathematics and StatisticsHainan Normal UniversityHaikouChina

Personalised recommendations