Skip to main content
Log in

An elastic-plastic contact model for line contact structures

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

An Erratum to this article was published on 20 June 2018

This article has been updated

Abstract

Although numerical simulation tools are now very powerful, the development of analytical models is very important for the prediction of the mechanical behaviour of line contact structures for deeply understanding contact problems and engineering applications. For the line contact structures widely used in the engineering field, few analytical models are available for predicting the mechanical behaviour when the structures deform plastically, as the classic Hertz’s theory would be invalid. Thus, the present study proposed an elastic-plastic model for line contact structures based on the understanding of the yield mechanism. A mathematical expression describing the global relationship between load history and contact width evolution of line contact structures was obtained. The proposed model was verified through an actual line contact test and a corresponding numerical simulation. The results confirmed that this model can be used to accurately predict the elastic-plastic mechanical behaviour of a line contact structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 20 June 2018

    In the original publication [1] of this paper, eq. (14)

References

  1. R. Jackson, H. Ghaednia, H. Lee, A. Rostami, and X. Wang, in Tribology for Scientists and Engineers: From Basics to Advanced Concepts, edited by P. Meneses, S. Ingole, M. Nosonovsky, S. Kailas, and M. Lovell (Springer Science+Business Media, New York, 2013), pp. 93–136.

  2. K. Mao, P. Langlois, Z. Hu, K. Alharbi, X. Xu, M. Milson, W. Li, C. J. Hooke, and D. Chetwynd, Wear 332–333, 822 (2015).

    Article  Google Scholar 

  3. C. Ren, J. Chen, H. Pan, X. Huang, and H. Zhu, Eng. Failure Anal. 28, 311 (2013).

    Article  Google Scholar 

  4. M. A. Guler, S. Adibnazari, and Y. Alinia, Int. J. Solids Struct. 49, 929 (2012).

    Article  Google Scholar 

  5. Z. Wen, L. Wu, W. Li, X. Jin, and M. Zhu, Wear 271, 426 (2011).

    Article  Google Scholar 

  6. P. B. U. Andersson, and W. Kropp, Wear 266, 129 (2009).

    Article  Google Scholar 

  7. W. Daves, W. Kubin, S. Scheriau, and M. Pletz, Wear 366–367, 78 (2016).

    Article  Google Scholar 

  8. K. L. Johnson, P. I. Mech. Eng. 196, 363 (1982).

    Google Scholar 

  9. K. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985), pp. 90–106.

    Book  Google Scholar 

  10. D. Hills, and D. Nowell, Mechanics of Fretting Fatigue (Springer-Science+Business Media, B.V., Netherlands, 1994), pp. 9–40.

    MATH  Google Scholar 

  11. Y. Jiang, and H. Sehitoglu, J. Tribol. 116, 577 (1994).

    Article  Google Scholar 

  12. Y. Jiang, B. Xu, and H. Sehitoglu, J. Tribol. 124, 699 (2002).

    Article  Google Scholar 

  13. J. E. Merwin, and K. L. Johnson, P. I. Mech. Eng. 177, 676 (1963).

    Google Scholar 

  14. Y. P. Zhao, L. S. Wang, and T. X. Yu, J. Adhes. Sci. Tech. 17, 519 (2003).

    Article  ADS  Google Scholar 

  15. Y. Zhang, and Y. Zhao, Sens. Actuat. A-Phys. 171, 381 (2011).

    Article  Google Scholar 

  16. Y. Zhao, Nano and Mesoscopic Mechanics (Science Press, Beijing, 2014), pp. 251–290.

    Google Scholar 

  17. S. Ma, J. Pang, Q. Ma, X. Wang, and H. Wang, Polymer Test. 32, 461 (2013).

    Article  Google Scholar 

  18. D. A. Hills, D. Nowell, and J. R. Barber, P. I. Mech. Eng. Part C-J. Mech. Eng. Sci. 231, 2451 (2017).

    Article  Google Scholar 

  19. H. Zhu, Z. He, Y. Zhao, and S. Ma, Polymer Test. 63, 118 (2017).

    Article  Google Scholar 

  20. Q. Ma, H. Liu, H. Wang, L. Sun, and S. Ma, Polymer Test. 54, 139 (2016).

    Article  Google Scholar 

  21. H. Liu, Q. Ma, and S. Ma, in Recent Advances in Mechanics and Materials in Design: Proceedings of the 6th International Conference on Mechanics and Materials in Design, Ponta Delgada, Portugal, July 26-30, 2015, edited by J. Silva Gomes, and S. Meguid (Porto FEUPINEGIM, Portuguesa, 2015). pp. 633–637.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaopeng Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Zhao, Y., He, Z. et al. An elastic-plastic contact model for line contact structures. Sci. China Phys. Mech. Astron. 61, 054611 (2018). https://doi.org/10.1007/s11433-017-9146-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9146-9

Keywords

Navigation