A simple method to design non-collision relative orbits for close spacecraft formation flying

  • Wei Jiang
  • JunFeng Li
  • FangHua Jiang
  • Franco Bernelli-Zazzera


A set of linearized relative motion equations of spacecraft flying on unperturbed elliptical orbits are specialized for particular cases, where the leader orbit is circular or equatorial. Based on these extended equations, we are able to analyze the relative motion regulation between a pair of spacecraft flying on arbitrary unperturbed orbits with the same semi-major axis in close formation. Given the initial orbital elements of the leader, this paper presents a simple way to design initial relative orbital elements of close spacecraft with the same semi-major axis, thus preventing collision under non-perturbed conditions. Considering the mean influence of J2 perturbation, namely secular J2 perturbation, we derive the mean derivatives of orbital element differences, and then expand them to first order. Thus the first order expansion of orbital element differences can be added to the relative motion equations for further analysis. For a pair of spacecraft that will never collide under non-perturbed situations, we present a simple method to determine whether a collision will occur when J2 perturbation is considered. Examples are given to prove the validity of the extended relative motion equations and to illustrate how the methods presented can be used. The simple method for designing initial relative orbital elements proposed here could be helpful to the preliminary design of the relative orbital elements between spacecraft in a close formation, when collision avoidance is necessary.


spacecraft formation relative motion collision avoidance orbit designing 

PACS number(s)

95.10.Ce 95.10.Eg 95.40.+s 


  1. 1.
    S. Bandyopadhyay, R. Foust, G. P. Subramanian, S. J. Chung, and F. Y. Hadaegh, J. Spacecraft Rockets 53, 567 (2016).ADSCrossRefGoogle Scholar
  2. 2.
    D. P. Scharf, and F. Y. Hadaegh, in Annual American Control Conference (IEEE, New York, 2003), pp.1733–1739.Google Scholar
  3. 3.
    J. Sullivan, S. Grimberg, and S. D’Amico, J. Guidance Control Dyn. 40, 1837 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    G. W. Hill, Am. J. Math. 1, 5 (1878).CrossRefGoogle Scholar
  5. 5.
    W. H. Clohessy, and R. S. Wiltshire, J. Aerospace Sci. 27, 653 (1960).CrossRefGoogle Scholar
  6. 6.
    M. H. Kaplan, Modern Spacecraft Dynamics & Control (Wiley, New York, 1976).Google Scholar
  7. 7.
    T. A. Lovell, and D. A. Spencer, J. Astronaut. Sci. 61, 341 (2014).CrossRefGoogle Scholar
  8. 8.
    D. A. Spencer, and T. A. Lovell, J. Astronaut. Sci. 62, 315 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    Y. Gao, H. Baoyin, and J. Li, Appl. Math. Mech. 24, 799 (2003).Google Scholar
  10. 10.
    R. E. Sherrill, A. J. Sinclair, and T. A. Lovell, J. Guidance Control Dyn. 38, 523 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    H. Wang, J. Li, and W. Yang, Eng. Mech. 4, 144 (2006).CrossRefGoogle Scholar
  12. 12.
    F. Jiang, J. Li, and H. Baoyin, Celest. Mech. Dyn. Astr. 98, 31 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    Z. Dang, Z. Wang, and Y. Zhang, J. Guidance Control Dyn. 37, 1984 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    Z. Dang, Z. Wang, and Y. Zhang, Celest. Mech. Dyn. Astr. 121, 301 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    Z. Dang, T. Li, Z. Wang, and Y. Zhang, Aerospace Sci. Tech. 46, 204 (2015).CrossRefGoogle Scholar
  16. 16.
    A. W. Koenig, T. Guffanti, and S. D’Amico, J. Guidance Control Dyn. 40, 1749 (2017).ADSCrossRefGoogle Scholar
  17. 17.
    H. Schaub, and K. T. Alfriend, Celest. Mech. Dyn. Astron. 79, 77 (2000).ADSCrossRefGoogle Scholar
  18. 18.
    H. Schaub, in Contemporary Research in Theroretical and Applied Mechanics, edited by R. C. Batra, and E. G. Henneke (Virginia Polytechnic Institute and State University, Blacksburg, 2002), pp. 1–9.Google Scholar
  19. 19.
    M. Xu, Y. Wang, and S. Xu, Celest. Mech. Dyn. Astr. 112, 427 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    M. E. Campbell, IEEE Trans. Contr. Syst. Technol. 13, 42 (2005).CrossRefGoogle Scholar
  21. 21.
    X. Yang, Study on Control Problems for the Leader-Follower Satellite Formation, Dissertation for the Doctoral Degree, (National University of Defense Technology, Changsha, 2010).Google Scholar
  22. 22.
    F. Santoni, F. Piergentili, and R. Ravaglia, J. Aerosp. Eng. 26, 618 (2013).CrossRefGoogle Scholar
  23. 23.
    Q. Hu, H. Dong, Y. Zhang, and G. Ma, Aerospace Sci. Tech. 42, 353 (2015).CrossRefGoogle Scholar
  24. 24.
    G. Deaconu, C. Louembet, and A. Théron, J. Guidance Control Dyn. 38, 1208 (2015).ADSCrossRefGoogle Scholar
  25. 25.
    F. Jiang, J. Li, H. Baoyin, and Y. Gao, J. Guidance Control Dyn. 31, 123 (2008).ADSCrossRefGoogle Scholar
  26. 26.
    P. Gurfil, and K. V. Kholshevnikov, J. Guidance Control Dyn. 29, 1004 (2006).ADSCrossRefGoogle Scholar
  27. 27.
    D. Morgan, S. J. Chung, L. Blackmore, B. Acikmese, D. Bayard, and F. Y. Hadaegh, J. Guidance Control Dyn. 35, 1492 (2012).ADSCrossRefGoogle Scholar
  28. 28.
    A. W. Koenig, and S. D’Amico, in 26th International Symposium on Space Flight Dynamics (ISSFD), Matsuyama, 6-9 June 2017.Google Scholar
  29. 29.
    H. Schaub, J. Guidance Control Dyn. 27, 839 (2004).ADSCrossRefGoogle Scholar
  30. 30.
    R. Zhang, Dynamics and Control of Spacecraft Orbit and Attitude (Beihang University, Peking, 1998).Google Scholar
  31. 31.
    D. W. Gim, and K. T. Alfriend, J. Guidance Control Dyn. 26, 956 (2003).ADSCrossRefGoogle Scholar
  32. 32.
    K. T. Alfriend, S. R. Vadali, P. Gurfil, J. How, and L. S. Breger, Spacecraft Formation Flying: Dynamics, Control and Navigation (Butterworth-Heinemann, Burlington, 2009).Google Scholar
  33. 33.
    L. Liu, Orbit Theory of Spacecraft (National Defense Industry, Peking, 2000).Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Wei Jiang
    • 1
  • JunFeng Li
    • 1
  • FangHua Jiang
    • 1
  • Franco Bernelli-Zazzera
    • 2
  1. 1.School of Aerospace EngineeringTsinghua UniversityBeijingChina
  2. 2.Department of Aerospace Science and TechnologyPolitecnico di MilanoMilanoItaly

Personalised recommendations