Skip to main content
Log in

Improving the efficiency of quantum hash function by dense coding of coin operators in discrete-time quantum walk

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Li et al. first proposed a quantum hash function (QHF) in a quantum-walk architecture. In their scheme, two two-particle interactions, i.e., I interaction and π-phase interaction are introduced and the choice of I or π-phase interactions at each iteration depends on a message bit. In this paper, we propose an efficient QHF by dense coding of coin operators in discrete-time quantum walk. Compared with existing QHFs, our protocol has the following advantages: the efficiency of the QHF can be doubled and even more; only one particle is enough and two-particle interactions are unnecessary so that quantum resources are saved. It is a clue to apply the dense coding technique to quantum cryptographic protocols, especially to the applications with restricted quantum resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Knuth, The Art of Computer Programming, Sorting and Searching (Addison-Wesley, New Jersey, 1998).

    MATH  Google Scholar 

  2. X. Wang, D. Feng, X. Lai, and H. Yu, in Rump Session of Crypto’04 E-print, Santa Barbara, 2004.

    Google Scholar 

  3. X. Wang, X. Lai, D. Feng, X. Yu, and X. Yu, in Proceedings of Eurocrypt’05, Aarhus, 2005. pp. 1–18.

    Google Scholar 

  4. X. Wang, and H. Yu, in Proceedings of Eurocrypt’05, Aarhus, 2005. p. 19–35.

    Google Scholar 

  5. A. Menezes, P. Van Oorschot, and S. Vanstone, Handbook of Applied Cryptography (CRC Press, 1996).

    Book  MATH  Google Scholar 

  6. J. Shen, D. Liu, J. Shen, Q. Liu, and X. Sun, Pervasive Mobile Computing 41, 219 (2017).

    Article  Google Scholar 

  7. Z. Fu, K. Ren, J. Shu, X. Sun, and F. Huang, IEEE Trans. Parallel. Distrib. Syst. 27, 2546 (2016).

    Article  Google Scholar 

  8. Z. Fu, X. Wu, C. Guan, X. Sun, and K. Ren, IEEE Trans. Inform. Foren. Secur. 11, 2706 (2016).

    Article  Google Scholar 

  9. Z. Fu, F. Huang, K. Ren, J. Weng, and C. Wang, IEEE Trans. Inform. Foren. Secur. 12, 1874 (2017).

    Article  Google Scholar 

  10. P. W. Shor, in Proceedings of 35th Annual Symposium on the Foundations of Computer Science, Santa Fe, 1994, pp. 124–134.

    Book  Google Scholar 

  11. L. K. Grover, in Proceedings of 28th Annual ACM Symposium on Theory of Computing, New York, 1996, pp. 212–218.

    Google Scholar 

  12. C. H. Bennett, and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems and Signal, Bangalore, 1984, pp.175–179.

    Google Scholar 

  13. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).

    Article  ADS  Google Scholar 

  14. H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, Phys. Rev. Lett. 87, 167902 (2001).

    Article  ADS  Google Scholar 

  15. D. Gavinsky, and T. Ito, Quantum Fingerprints that Keep Secrets. Technical Report (Cornell University Library, 2010).

    Google Scholar 

  16. F. M. Ablayev, and A. V. Vasiliev, Laser Phys. Lett. 11, 025202 (2014).

    Article  ADS  Google Scholar 

  17. F. Ablayev, M. Ablayev, and A. Vasiliev, J. Phys.-Conf. Ser. 681, 012019 (2016).

    Article  Google Scholar 

  18. M. Ziatdinov. arXiv: 1412. 5135

  19. M. Ziatdinov, Lobachev. J. Math. 37, 705 (2016).

    Article  MathSciNet  Google Scholar 

  20. A. Vasiliev, Lobachev. J. Math. 37, 753 (2016).

    Article  Google Scholar 

  21. D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani, in Proceedings of the 33rd ACM Symposium on Theory of Computing, Crete, 2001, pp. 50–59.

    MATH  Google Scholar 

  22. A. Ambainis, SIAM J. Comput. 37, 210 (2007).

    Article  MathSciNet  Google Scholar 

  23. F. Magniez, M. Santha, and M. Szegedy, SIAM J. Comput. 37, 413 (2007).

    Article  MathSciNet  Google Scholar 

  24. D. Tamascelli, and L. Zanetti, J. Phys. A-Math. Theor. 47, 325302 (2014), arXiv: 1401.1278

    Article  Google Scholar 

  25. D. Li, J. Zhang, F. Z. Guo, W. Huang, Q. Y. Wen, and H. Chen, Quantum Inf. Process. 12, 1501 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  26. Y. G. Yang, P. Xu, R. Yang, Y. H. Zhou, and W. M. Shi, Sci. Rep. 6, 19788 (2016).

    Article  ADS  Google Scholar 

  27. D. Li, Y.-G. Yang, J.-L. Bi, J.-B. Yuan, and J. Xu. arXiv: 1707.07389

  28. P. Xue, and B. C. Sanders, Phys. Rev. A 85, 022307 (2012), arXiv: 1112.1487

    Article  ADS  Google Scholar 

  29. M. Štefanák, S. M. Barnett, B. Kollár, T. Kiss, and I. Jex, New J. Phys. 13, 033029 (2011), arXiv: 1102.4445

    Article  Google Scholar 

  30. H. K. Lo, and H. F. Chau, Science 283, 2050 (1999).

    Article  ADS  Google Scholar 

  31. Y. G. Yang, Z. C. Liu, J. Li, X. B. Chen, H. J. Zuo, Y. H. Zhou, and W. M. Shi, Quantum Inf. Process. 16, 12 (2017).

    Article  ADS  Google Scholar 

  32. Y. G. Yang, H. Lei, Z. C. Liu, Y. H. Zhou, and W. M. Shi, Quantum Inf. Process. 15, 2487 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  33. T. Y. Wang, and Z. L. Wei, Quantum Inf. Process. 11, 455 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  34. T. Y. Wang, X. Q. Cai, Y. L. Ren, and R. L. Zhang, Sci. Rep. 5, 9231 (2015).

    Article  Google Scholar 

  35. Y. G. Yang, and Q. Y. Wen, J. Phys. A-Math. Theor. 42, 055305 (2009).

    Article  ADS  Google Scholar 

  36. Y. G. Yang, W. F. Cao, and Q. Y. Wen, Phys. Scr. 80, 065002 (2009).

    Article  ADS  Google Scholar 

  37. X. B. Chen, G. Xu, X. X. Niu, Q. Y. Wen, and Y. X. Yang, Opt. Commun. 283, 1561 (2010).

    Article  ADS  Google Scholar 

  38. Y. F. He, and W. P. Ma, Quantum Inf. Process. 15, 5023 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  39. B. Liu, F. Gao, W. Huang, and Q. Wen, Quantum Inf. Process. 12, 1797 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  40. F. Gao, B. Liu, W. Huang, and Q. Y. Wen, IEEE J. Sel. Top. Quantum Electron. 21, 98 (2015).

    Article  Google Scholar 

  41. C. Y. Wei, T. Y. Wang, and F. Gao, Phys. Rev. A 93, 042318 (2016).

    Article  ADS  Google Scholar 

  42. Y. G. Yang, Z. C. Liu, X. B. Chen, Y. H. Zhou, and W. M. Shi, Sci. China-Phys. Mech. Astron. 60, 120311 (2017).

    Article  ADS  Google Scholar 

  43. Y. G. Yang, Z. C. Liu, J. Li, X. B. Chen, H. J. Zuo, Y. H. Zhou, and W. M. Shi, Phys. Lett. A 380, 4033 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuGuang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhang, Y., Xu, G. et al. Improving the efficiency of quantum hash function by dense coding of coin operators in discrete-time quantum walk. Sci. China Phys. Mech. Astron. 61, 030312 (2018). https://doi.org/10.1007/s11433-017-9132-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9132-y

Keywords

Navigation