Realistic interpretation of quantum mechanics and encounter-delayed-choice experiment

Open Access
Article

Abstract

In this paper, a realistic interpretation (REIN) of the wave function in quantum mechanics is briefly presented. We demonstrate that in the REIN, the wave function of a microscopic object is its real existence rather than a mere mathematical description. Specifically, the quantum object can exist in disjointed regions of space just as the wave function is distributed, travels at a finite speed, and collapses instantly upon a measurement. Furthermore, we analyze the single-photon interference in a Mach-Zehnder interferometer (MZI) using the REIN. Based on this, we propose and experimentally implement a generalized delayed-choice experiment, called the encounter-delayed-choice experiment, where the second beam splitter is decided whether or not to insert at the encounter of two sub-waves along the arms of the MZI. In such an experiment, the parts of the sub-waves, which do not travel through the beam splitter, show a particle nature, whereas the remaining parts interfere and thus show a wave nature. The predicted phenomenon is clearly demonstrated in the experiment, thus supporting the REIN idea.

Keywords

wave function realistic interpretation Mach-Zehnder interferometer wave-particle duality 

References

  1. 1.
    K. F. Weizsäcker, Z. Phys. 70, 114 (1931).ADSCrossRefGoogle Scholar
  2. 2.
    C. F. von Weizsäcker, Z. Phys. 118, 489 (1941).CrossRefGoogle Scholar
  3. 3.
    J. A. Wheeler, in: Mathematical Foundations of Quantum Theory, edited by A. R. Marlow (Academic Press, Cambridge, 1978), pp. 9–48.Google Scholar
  4. 4.
    T. Hellmuth, H. Walther, A. Zajonc, and W. Schleich, Phys. Rev. A 35, 2532 (1987).ADSCrossRefGoogle Scholar
  5. 5.
    B. J. Lawson-Daku, R. Asimov, O. Gorceix, C. Miniatura, J. Robert, and J. Baudon, Phys. Rev. A 54, 5042 (1996).ADSCrossRefGoogle Scholar
  6. 6.
    Y. H. Kim, R. Yu, S. P. Kulik, Y. Shih, and M. O. Scully, Phys. Rev. Lett. 84, 1 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. F. Roch, Science 315, 966 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. F. Roch, Phys. Rev. Lett. 100, 220402 (2008).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    X. Ma, S. Zotter, J. Kofler, R. Ursin, T. Jennewein, Brukner, and A. Zeilinger, Nat. Phys. 8, 480 (2012).Google Scholar
  10. 10.
    R. Ionicioiu, and D. R. Terno, Phys. Rev. Lett. 107, 230406 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    M. Schirber, Physics 4, 102 (2011).CrossRefGoogle Scholar
  12. 12.
    S. S. Roy, A. Shukla, and T. S. Mahesh, Phys. Rev. A 85, 022109 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    R. Auccaise, R. M. Serra, J. G. Filgueiras, R. S. Sarthour, I. S. Oliveira, and L. C. Céleri, Phys. Rev. A 85, 032121 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    A. Peruzzo, P. Shadbolt, N. Brunner, S. Popescu, and J. L. OBrien, Science 338, 634 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    F. Kaiser, T. Coudreau, P. Milman, D. B. Ostrowsky, and S. Tanzilli, Science 338, 637 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    J. S. Tang, Y. L. Li, X. Y. Xu, G. Y. Xiang, C. F. Li, and G. C. Guo, Nat. Photon. 6, 602 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    G. Adesso, and D. Girolami, Nat. Photon. 6, 579 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    L. C. Céleri, R. M. Gomes, R. Ionicioiu, T. Jennewein, R. B. Mann, and D. R. Terno, Found. Phys. 44, 576 (2014).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    R. Ionicioiu, T. Jennewein, R. B. Mann, and D. R. Terno, Nat. Commun. 5, 3997 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, Nature 474, 188 (2011).CrossRefGoogle Scholar
  21. 21.
    S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, Science 332, 1170 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    W. P. Schleich, M. Freyberger, and M. S. Zubairy, Phys. Rev. A 87, 014102 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    L. D. Landau, and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory in Course of Theoretical Physics Vol. 3, 3rd ed, (Pergamon Press, Oxford, 1989), p. 6.Google Scholar
  24. 24.
    C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics Vol. 1 (Wiley-Interscience, New York, 2006), p. 19.MATHGoogle Scholar
  25. 25.
    N. D. Mermin, Phys. Today 62, 8 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    G. L. Long, Sci. Bull. 62, 1355 (2017).CrossRefGoogle Scholar
  27. 27.
    G. L. Long, Commun. Theor. Phys. 45, 825 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    G. L. Long, and L. Yang, Commun. Theor. Phys. 50, 1303 (2008).ADSCrossRefGoogle Scholar
  29. 29.
    G. L. Long, L. Yang, and W. Chuan, Commun. Theor. Phys. 51, 65 (2009).ADSCrossRefGoogle Scholar
  30. 30.
    S. Gudder, Quant. Inf. Process. 6, 37 (2007).CrossRefGoogle Scholar
  31. 31.
    G. L. Long, Quant. Inf. Process. 6, 49 (2007).ADSCrossRefGoogle Scholar
  32. 32.
    G. L. Long, and L. Yang, Commun. Theor. Phys. 50, 1303 (2008).ADSCrossRefGoogle Scholar
  33. 33.
    G. L. Long, Int. J. Theor. Phys. 50, 1305 (2011).CrossRefGoogle Scholar
  34. 34.
    C. Y. Li, W. Y. Wang, C. Wang, S.Y. Song, and G. L. Long, in: Duality Quantum Information and Duality Quantum Communication: Proceedings of the International Conference on Advances in Quantum Theory, edited by G. Jaeger, A. Khrennikov, M. Schlosshauer, and G. Weihs (AIP Publishing, Växjö, 2011) pp. 158–165.Google Scholar
  35. 35.
    A. M. Childs, and N. Wiebe, arXiv: 1202.5822.Google Scholar
  36. 36.
    Z. Y. Zhou, Z. H. Zhu, S. L. Liu, Y. H. Li, S. Shi, D. S. Ding, L. X. Chen, W. Gao, G. C. Guo, and B. S. Shi, Sci. Bull. 62, 1185 (2017).CrossRefGoogle Scholar
  37. 37.
    D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, Phys. Rev. Lett. 114, 090502 (2015).ADSCrossRefGoogle Scholar
  38. 38.
    S. J. Wei, and G. L. Long, Quant. Inf. Process. 15, 1189 (2016).ADSCrossRefGoogle Scholar
  39. 39.
    S. J. Wei, D. Ruan, and G. L. Long, Sci. Rep. 6, 30727 (2016).ADSCrossRefGoogle Scholar
  40. 40.
    A. W. Harrow, A. Hassidim, and S. Lloyd, Phys. Rev. Lett. 103, 150502 (2009).ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    S. J. Wei, Z. R. Zou, D. Ruan, and G. L. Long, in Realization of the Algorithm for System of Linear Equations in Duality Quantum Computing: Proceeding of IEEE 85th Vehicular Technology Conference (Spring, Sydney, 2017).CrossRefGoogle Scholar
  42. 42.
    X. Qiang, X. Zhou, K. Aungskunsiri, H. Cable, and J. L. OBrien, Quant. Sci. Technol. 2, 045002 (2017).ADSCrossRefGoogle Scholar
  43. 43.
    R. J. Marshman, A. P. Lund, P. P. Rohde, and T. C. Ralph, arXiv: 1709.02157.Google Scholar

Copyright information

© The Author(s) 2017. This article is published with open access at Springerlink.com, corrected publication 03/2018 2017

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

Authors and Affiliations

  1. 1.State Key Laboratory of Low-Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijingChina
  2. 2.Innovative Center of Quantum MatterBeijingChina
  3. 3.Tsinghua National Laboratory for Information Science and TechnologyTsinghua UniversityBeijingChina

Personalised recommendations