Skip to main content

Realistic interpretation of quantum mechanics and encounter-delayed-choice experiment

An Erratum to this article was published on 20 March 2018

This article has been updated

Abstract

In this paper, a realistic interpretation (REIN) of the wave function in quantum mechanics is briefly presented. We demonstrate that in the REIN, the wave function of a microscopic object is its real existence rather than a mere mathematical description. Specifically, the quantum object can exist in disjointed regions of space just as the wave function is distributed, travels at a finite speed, and collapses instantly upon a measurement. Furthermore, we analyze the single-photon interference in a Mach-Zehnder interferometer (MZI) using the REIN. Based on this, we propose and experimentally implement a generalized delayed-choice experiment, called the encounter-delayed-choice experiment, where the second beam splitter is decided whether or not to insert at the encounter of two sub-waves along the arms of the MZI. In such an experiment, the parts of the sub-waves, which do not travel through the beam splitter, show a particle nature, whereas the remaining parts interfere and thus show a wave nature. The predicted phenomenon is clearly demonstrated in the experiment, thus supporting the REIN idea.

Change history

  • 20 March 2018

    The article Realistic interpretation of quantum mechanics and encounter-delayed-choice experiment, written by GuiLu Long, Wei Qin, Zhe Yang, and Jun-Lin Li, was originally published online without open access. After publication in volume 61, issue 3: 030311 the author decided to opt for Open Choice and to make the article an open access publication. Therefore, the copyright of the article has been changed to © The Author(s) 2017 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

    The original article has been corrected.

References

  1. 1

    K. F. Weizsäcker, Z. Phys. 70, 114 (1931).

    ADS  Article  Google Scholar 

  2. 2

    C. F. von Weizsäcker, Z. Phys. 118, 489 (1941).

    Article  Google Scholar 

  3. 3

    J. A. Wheeler, in: Mathematical Foundations of Quantum Theory, edited by A. R. Marlow (Academic Press, Cambridge, 1978), pp. 9–48.

  4. 4

    T. Hellmuth, H. Walther, A. Zajonc, and W. Schleich, Phys. Rev. A 35, 2532 (1987).

    ADS  Article  Google Scholar 

  5. 5

    B. J. Lawson-Daku, R. Asimov, O. Gorceix, C. Miniatura, J. Robert, and J. Baudon, Phys. Rev. A 54, 5042 (1996).

    ADS  Article  Google Scholar 

  6. 6

    Y. H. Kim, R. Yu, S. P. Kulik, Y. Shih, and M. O. Scully, Phys. Rev. Lett. 84, 1 (2000).

    ADS  Article  Google Scholar 

  7. 7

    V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. F. Roch, Science 315, 966 (2007).

    ADS  Article  Google Scholar 

  8. 8

    V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. F. Roch, Phys. Rev. Lett. 100, 220402 (2008).

    ADS  MathSciNet  Article  Google Scholar 

  9. 9

    X. Ma, S. Zotter, J. Kofler, R. Ursin, T. Jennewein, Brukner, and A. Zeilinger, Nat. Phys. 8, 480 (2012).

    Google Scholar 

  10. 10

    R. Ionicioiu, and D. R. Terno, Phys. Rev. Lett. 107, 230406 (2011).

    ADS  Article  Google Scholar 

  11. 11

    M. Schirber, Physics 4, 102 (2011).

    Article  Google Scholar 

  12. 12

    S. S. Roy, A. Shukla, and T. S. Mahesh, Phys. Rev. A 85, 022109 (2012).

    ADS  Article  Google Scholar 

  13. 13

    R. Auccaise, R. M. Serra, J. G. Filgueiras, R. S. Sarthour, I. S. Oliveira, and L. C. Céleri, Phys. Rev. A 85, 032121 (2012).

    ADS  Article  Google Scholar 

  14. 14

    A. Peruzzo, P. Shadbolt, N. Brunner, S. Popescu, and J. L. OBrien, Science 338, 634 (2012).

    ADS  Article  Google Scholar 

  15. 15

    F. Kaiser, T. Coudreau, P. Milman, D. B. Ostrowsky, and S. Tanzilli, Science 338, 637 (2012).

    ADS  Article  Google Scholar 

  16. 16

    J. S. Tang, Y. L. Li, X. Y. Xu, G. Y. Xiang, C. F. Li, and G. C. Guo, Nat. Photon. 6, 602 (2012).

    ADS  Article  Google Scholar 

  17. 17

    G. Adesso, and D. Girolami, Nat. Photon. 6, 579 (2012).

    ADS  Article  Google Scholar 

  18. 18

    L. C. Céleri, R. M. Gomes, R. Ionicioiu, T. Jennewein, R. B. Mann, and D. R. Terno, Found. Phys. 44, 576 (2014).

    ADS  MathSciNet  Article  Google Scholar 

  19. 19

    R. Ionicioiu, T. Jennewein, R. B. Mann, and D. R. Terno, Nat. Commun. 5, 3997 (2014).

    ADS  Article  Google Scholar 

  20. 20

    J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, Nature 474, 188 (2011).

    Article  Google Scholar 

  21. 21

    S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, Science 332, 1170 (2011).

    ADS  Article  Google Scholar 

  22. 22

    W. P. Schleich, M. Freyberger, and M. S. Zubairy, Phys. Rev. A 87, 014102 (2013).

    ADS  Article  Google Scholar 

  23. 23

    L. D. Landau, and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory in Course of Theoretical Physics Vol. 3, 3rd ed, (Pergamon Press, Oxford, 1989), p. 6.

    Google Scholar 

  24. 24

    C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics Vol. 1 (Wiley-Interscience, New York, 2006), p. 19.

    MATH  Google Scholar 

  25. 25

    N. D. Mermin, Phys. Today 62, 8 (2009).

    ADS  Article  Google Scholar 

  26. 26

    G. L. Long, Sci. Bull. 62, 1355 (2017).

    Article  Google Scholar 

  27. 27

    G. L. Long, Commun. Theor. Phys. 45, 825 (2006).

    ADS  Article  Google Scholar 

  28. 28

    G. L. Long, and L. Yang, Commun. Theor. Phys. 50, 1303 (2008).

    ADS  Article  Google Scholar 

  29. 29

    G. L. Long, L. Yang, and W. Chuan, Commun. Theor. Phys. 51, 65 (2009).

    ADS  Article  Google Scholar 

  30. 30

    S. Gudder, Quant. Inf. Process. 6, 37 (2007).

    Article  Google Scholar 

  31. 31

    G. L. Long, Quant. Inf. Process. 6, 49 (2007).

    ADS  Article  Google Scholar 

  32. 32

    G. L. Long, and L. Yang, Commun. Theor. Phys. 50, 1303 (2008).

    ADS  Article  Google Scholar 

  33. 33

    G. L. Long, Int. J. Theor. Phys. 50, 1305 (2011).

    Article  Google Scholar 

  34. 34

    C. Y. Li, W. Y. Wang, C. Wang, S.Y. Song, and G. L. Long, in: Duality Quantum Information and Duality Quantum Communication: Proceedings of the International Conference on Advances in Quantum Theory, edited by G. Jaeger, A. Khrennikov, M. Schlosshauer, and G. Weihs (AIP Publishing, Växjö, 2011) pp. 158–165.

  35. 35

    A. M. Childs, and N. Wiebe, arXiv: 1202.5822.

  36. 36

    Z. Y. Zhou, Z. H. Zhu, S. L. Liu, Y. H. Li, S. Shi, D. S. Ding, L. X. Chen, W. Gao, G. C. Guo, and B. S. Shi, Sci. Bull. 62, 1185 (2017).

    Article  Google Scholar 

  37. 37

    D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, Phys. Rev. Lett. 114, 090502 (2015).

    ADS  Article  Google Scholar 

  38. 38

    S. J. Wei, and G. L. Long, Quant. Inf. Process. 15, 1189 (2016).

    ADS  Article  Google Scholar 

  39. 39

    S. J. Wei, D. Ruan, and G. L. Long, Sci. Rep. 6, 30727 (2016).

    ADS  Article  Google Scholar 

  40. 40

    A. W. Harrow, A. Hassidim, and S. Lloyd, Phys. Rev. Lett. 103, 150502 (2009).

    ADS  MathSciNet  Article  Google Scholar 

  41. 41

    S. J. Wei, Z. R. Zou, D. Ruan, and G. L. Long, in Realization of the Algorithm for System of Linear Equations in Duality Quantum Computing: Proceeding of IEEE 85th Vehicular Technology Conference (Spring, Sydney, 2017).

    Book  Google Scholar 

  42. 42

    X. Qiang, X. Zhou, K. Aungskunsiri, H. Cable, and J. L. OBrien, Quant. Sci. Technol. 2, 045002 (2017).

    ADS  Article  Google Scholar 

  43. 43

    R. J. Marshman, A. P. Lund, P. P. Rohde, and T. C. Ralph, arXiv: 1709.02157.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to GuiLu Long.

Additional information

The original version of this article was revised due to a retrospective Open Access order.

A correction to this article is available at https://doi.org/10.1007/s11433-018-9198-0

An erratum to this article is available at https://doi.org/10.1007/s11433-018-9198-0.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Long, G., Qin, W., Yang, Z. et al. Realistic interpretation of quantum mechanics and encounter-delayed-choice experiment. Sci. China Phys. Mech. Astron. 61, 030311 (2018). https://doi.org/10.1007/s11433-017-9122-2

Download citation

Keywords

  • wave function
  • realistic interpretation
  • Mach-Zehnder interferometer
  • wave-particle duality