Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Science China Physics, Mechanics & Astronomy
  3. Article
Realistic interpretation of quantum mechanics and encounter-delayed-choice experiment
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

The Quantum Delayed Choice Experiment Revisited

06 December 2019

M. Bendahane, M. El Atiki & A. Kassou-Ou-Ali

Optical beam splitter, Mach–Zehnder interferometer and the delayed choice issue

24 August 2021

Dietrich von der Linde

Revisiting self-interference in Young’s double-slit experiments

18 January 2023

Sangbae Kim & Byoung S. Ham

The Delayed-Choice Quantum Eraser Leaves No Choice

16 July 2021

Tabish Qureshi

The Hong–Ou–Mandel experiment: from photon indistinguishability to continuous-variable quantum computing

21 October 2022

N. Fabre, M. Amanti, … P. Milman

Physics of Interference of Quantum Particles

05 November 2019

S. V. Gantsevich & V. L. Gurevich

Two-photon interferences of weak coherent lights

15 October 2021

Heonoh Kim, Osung Kwon & Han Seb Moon

A Quantum Field Theory View of Interaction Free Measurements

30 June 2020

Filipe C. R. Barroso & Orfeu Bertolami

Quantum coherence versus interferometric visibility in a biased Mach–Zehnder interferometer

18 January 2023

Diego S. S. Chrysosthemos, Marcos L. W. Basso & Jonas Maziero

Download PDF
  • Article
  • Open Access
  • Published: 13 December 2017

Realistic interpretation of quantum mechanics and encounter-delayed-choice experiment

  • GuiLu Long1,2,3,
  • Wei Qin1,
  • Zhe Yang1 &
  • …
  • Jun-Lin Li1 

Science China Physics, Mechanics & Astronomy volume 61, Article number: 030311 (2018) Cite this article

  • 1784 Accesses

  • 29 Citations

  • 45 Altmetric

  • Metrics details

An Erratum to this article was published on 20 March 2018

This article has been updated

Abstract

In this paper, a realistic interpretation (REIN) of the wave function in quantum mechanics is briefly presented. We demonstrate that in the REIN, the wave function of a microscopic object is its real existence rather than a mere mathematical description. Specifically, the quantum object can exist in disjointed regions of space just as the wave function is distributed, travels at a finite speed, and collapses instantly upon a measurement. Furthermore, we analyze the single-photon interference in a Mach-Zehnder interferometer (MZI) using the REIN. Based on this, we propose and experimentally implement a generalized delayed-choice experiment, called the encounter-delayed-choice experiment, where the second beam splitter is decided whether or not to insert at the encounter of two sub-waves along the arms of the MZI. In such an experiment, the parts of the sub-waves, which do not travel through the beam splitter, show a particle nature, whereas the remaining parts interfere and thus show a wave nature. The predicted phenomenon is clearly demonstrated in the experiment, thus supporting the REIN idea.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Change history

  • 20 March 2018

    The article Realistic interpretation of quantum mechanics and encounter-delayed-choice experiment, written by GuiLu Long, Wei Qin, Zhe Yang, and Jun-Lin Li, was originally published online without open access. After publication in volume 61, issue 3: 030311 the author decided to opt for Open Choice and to make the article an open access publication. Therefore, the copyright of the article has been changed to © The Author(s) 2017 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

    The original article has been corrected.

References

  1. K. F. Weizsäcker, Z. Phys. 70, 114 (1931).

    Article  ADS  Google Scholar 

  2. C. F. von Weizsäcker, Z. Phys. 118, 489 (1941).

    Article  Google Scholar 

  3. J. A. Wheeler, in: Mathematical Foundations of Quantum Theory, edited by A. R. Marlow (Academic Press, Cambridge, 1978), pp. 9–48.

  4. T. Hellmuth, H. Walther, A. Zajonc, and W. Schleich, Phys. Rev. A 35, 2532 (1987).

    Article  ADS  Google Scholar 

  5. B. J. Lawson-Daku, R. Asimov, O. Gorceix, C. Miniatura, J. Robert, and J. Baudon, Phys. Rev. A 54, 5042 (1996).

    Article  ADS  Google Scholar 

  6. Y. H. Kim, R. Yu, S. P. Kulik, Y. Shih, and M. O. Scully, Phys. Rev. Lett. 84, 1 (2000).

    Article  ADS  Google Scholar 

  7. V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. F. Roch, Science 315, 966 (2007).

    Article  ADS  Google Scholar 

  8. V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. F. Roch, Phys. Rev. Lett. 100, 220402 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  9. X. Ma, S. Zotter, J. Kofler, R. Ursin, T. Jennewein, Brukner, and A. Zeilinger, Nat. Phys. 8, 480 (2012).

    Google Scholar 

  10. R. Ionicioiu, and D. R. Terno, Phys. Rev. Lett. 107, 230406 (2011).

    Article  ADS  Google Scholar 

  11. M. Schirber, Physics 4, 102 (2011).

    Article  Google Scholar 

  12. S. S. Roy, A. Shukla, and T. S. Mahesh, Phys. Rev. A 85, 022109 (2012).

    Article  ADS  Google Scholar 

  13. R. Auccaise, R. M. Serra, J. G. Filgueiras, R. S. Sarthour, I. S. Oliveira, and L. C. Céleri, Phys. Rev. A 85, 032121 (2012).

    Article  ADS  Google Scholar 

  14. A. Peruzzo, P. Shadbolt, N. Brunner, S. Popescu, and J. L. OBrien, Science 338, 634 (2012).

    Article  ADS  Google Scholar 

  15. F. Kaiser, T. Coudreau, P. Milman, D. B. Ostrowsky, and S. Tanzilli, Science 338, 637 (2012).

    Article  ADS  Google Scholar 

  16. J. S. Tang, Y. L. Li, X. Y. Xu, G. Y. Xiang, C. F. Li, and G. C. Guo, Nat. Photon. 6, 602 (2012).

    Article  ADS  Google Scholar 

  17. G. Adesso, and D. Girolami, Nat. Photon. 6, 579 (2012).

    Article  ADS  Google Scholar 

  18. L. C. Céleri, R. M. Gomes, R. Ionicioiu, T. Jennewein, R. B. Mann, and D. R. Terno, Found. Phys. 44, 576 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  19. R. Ionicioiu, T. Jennewein, R. B. Mann, and D. R. Terno, Nat. Commun. 5, 3997 (2014).

    Article  ADS  Google Scholar 

  20. J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, Nature 474, 188 (2011).

    Article  Google Scholar 

  21. S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, Science 332, 1170 (2011).

    Article  ADS  Google Scholar 

  22. W. P. Schleich, M. Freyberger, and M. S. Zubairy, Phys. Rev. A 87, 014102 (2013).

    Article  ADS  Google Scholar 

  23. L. D. Landau, and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory in Course of Theoretical Physics Vol. 3, 3rd ed, (Pergamon Press, Oxford, 1989), p. 6.

    Google Scholar 

  24. C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics Vol. 1 (Wiley-Interscience, New York, 2006), p. 19.

    MATH  Google Scholar 

  25. N. D. Mermin, Phys. Today 62, 8 (2009).

    Article  ADS  Google Scholar 

  26. G. L. Long, Sci. Bull. 62, 1355 (2017).

    Article  Google Scholar 

  27. G. L. Long, Commun. Theor. Phys. 45, 825 (2006).

    Article  ADS  Google Scholar 

  28. G. L. Long, and L. Yang, Commun. Theor. Phys. 50, 1303 (2008).

    Article  ADS  Google Scholar 

  29. G. L. Long, L. Yang, and W. Chuan, Commun. Theor. Phys. 51, 65 (2009).

    Article  ADS  Google Scholar 

  30. S. Gudder, Quant. Inf. Process. 6, 37 (2007).

    Article  Google Scholar 

  31. G. L. Long, Quant. Inf. Process. 6, 49 (2007).

    Article  ADS  Google Scholar 

  32. G. L. Long, and L. Yang, Commun. Theor. Phys. 50, 1303 (2008).

    Article  ADS  Google Scholar 

  33. G. L. Long, Int. J. Theor. Phys. 50, 1305 (2011).

    Article  Google Scholar 

  34. C. Y. Li, W. Y. Wang, C. Wang, S.Y. Song, and G. L. Long, in: Duality Quantum Information and Duality Quantum Communication: Proceedings of the International Conference on Advances in Quantum Theory, edited by G. Jaeger, A. Khrennikov, M. Schlosshauer, and G. Weihs (AIP Publishing, Växjö, 2011) pp. 158–165.

  35. A. M. Childs, and N. Wiebe, arXiv: 1202.5822.

  36. Z. Y. Zhou, Z. H. Zhu, S. L. Liu, Y. H. Li, S. Shi, D. S. Ding, L. X. Chen, W. Gao, G. C. Guo, and B. S. Shi, Sci. Bull. 62, 1185 (2017).

    Article  Google Scholar 

  37. D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, Phys. Rev. Lett. 114, 090502 (2015).

    Article  ADS  Google Scholar 

  38. S. J. Wei, and G. L. Long, Quant. Inf. Process. 15, 1189 (2016).

    Article  ADS  Google Scholar 

  39. S. J. Wei, D. Ruan, and G. L. Long, Sci. Rep. 6, 30727 (2016).

    Article  ADS  Google Scholar 

  40. A. W. Harrow, A. Hassidim, and S. Lloyd, Phys. Rev. Lett. 103, 150502 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  41. S. J. Wei, Z. R. Zou, D. Ruan, and G. L. Long, in Realization of the Algorithm for System of Linear Equations in Duality Quantum Computing: Proceeding of IEEE 85th Vehicular Technology Conference (Spring, Sydney, 2017).

    Book  Google Scholar 

  42. X. Qiang, X. Zhou, K. Aungskunsiri, H. Cable, and J. L. OBrien, Quant. Sci. Technol. 2, 045002 (2017).

    Article  ADS  Google Scholar 

  43. R. J. Marshman, A. P. Lund, P. P. Rohde, and T. C. Ralph, arXiv: 1709.02157.

Download references

Author information

Authors and Affiliations

  1. State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China

    GuiLu Long, Wei Qin, Zhe Yang & Jun-Lin Li

  2. Innovative Center of Quantum Matter, Beijing, 100084, China

    GuiLu Long

  3. Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, 100084, China

    GuiLu Long

Authors
  1. GuiLu Long
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Wei Qin
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Zhe Yang
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Jun-Lin Li
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to GuiLu Long.

Additional information

The original version of this article was revised due to a retrospective Open Access order.

A correction to this article is available at https://doi.org/10.1007/s11433-018-9198-0

An erratum to this article is available at https://doi.org/10.1007/s11433-018-9198-0.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Long, G., Qin, W., Yang, Z. et al. Realistic interpretation of quantum mechanics and encounter-delayed-choice experiment. Sci. China Phys. Mech. Astron. 61, 030311 (2018). https://doi.org/10.1007/s11433-017-9122-2

Download citation

  • Received: 25 September 2017

  • Accepted: 19 October 2017

  • Published: 13 December 2017

  • DOI: https://doi.org/10.1007/s11433-017-9122-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • wave function
  • realistic interpretation
  • Mach-Zehnder interferometer
  • wave-particle duality
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.