Skip to main content
Log in

Fast holonomic quantum computation based on solid-state spins with all-optical control

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Holonomic quantum computation is a quantum computation strategy that promises some built-in noise-resilience features. Here, we propose a scheme for nonadiabatic holonomic quantum computation with nitrogen-vacancy center electron spins, which are characterized by fast quantum gates and long qubit coherence times. By varying the detuning, amplitudes, and phase difference of lasers applied to a nitrogen-vacancy center, one can directly realize an arbitrary single-qubit holonomic gate on the spin. Meanwhile, with the help of cavity-assisted interactions, a nontrivial two-qubit holonomic quantum gate can also be induced. The distinct merit of this scheme is that all the quantum gates are obtained via an all-optical geometric manipulation of the solid-state spins. Therefore, our scheme opens the possibility for robust quantum computation using solid-state spins in an all-optical way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Zanardi, and M. Rasetti, Phys. Lett. A 264, 94 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  2. D. Parodi, M. Sassetti, P. Solinas, P. Zanardi, and N. Zangh`ı, Phys. Rev. A 73, 052304 (2006).

    Article  ADS  Google Scholar 

  3. M. Johansson, E. Sjöqvist, L. M. Andersson, M. Ericsson, B. Hessmo, K. Singh, and D. M. Tong, Phys. Rev. A 86, 062322 (2012).

    Article  ADS  Google Scholar 

  4. P. Solinas, M. Sassetti, P. Truini, and N. Zangh`ı, New J. Phys. 14, 093006 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  5. J. Jing, C. H. Lam, and L. A. Wu, Phys. Rev. A 95, 012334 (2017).

    Article  ADS  Google Scholar 

  6. L. M. Duan, Science 292, 1695 (2001).

    Article  ADS  Google Scholar 

  7. A. Recati, T. Calarco, P. Zanardi, J. I. Cirac, and P. Zoller, Phys. Rev. A 66, 032309 (2002).

    Article  ADS  Google Scholar 

  8. P. Solinas, P. Zanardi, N. Zangh`ı, and F. Rossi, Phys. Rev. B 67, 121307(R) (2003).

    Article  ADS  Google Scholar 

  9. P. Zhang, Z. D. Wang, J. D. Sun, and C. P. Sun, Phys. Rev. A 71, 042301 (2005).

    Article  ADS  Google Scholar 

  10. X. D. Zhang, Q. Zhang, and Z. D. Wang, Phys. Rev. A 74, 034302 (2006).

    Article  ADS  Google Scholar 

  11. X. B. Wang, and K. Matsumoto, Phys. Rev. Lett. 87, 097901 (2001).

    Article  Google Scholar 

  12. S. L. Zhu, and Z. D. Wang, Phys. Rev. Lett. 89, 097902 (2002).

    Article  ADS  Google Scholar 

  13. M. Demirplak, and S. A. Rice, J. Phys. Chem. A 107, 9937 (2003).

    Article  Google Scholar 

  14. M. Demirplak, and S. A. Rice, J. Phys. Chem. B 109, 6838 (2005).

    Article  Google Scholar 

  15. M. V. Berry, J. Phys. A-Math. Theor. 42, 365303 (2009).

    Article  Google Scholar 

  16. X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, Phys. Rev. Lett. 105, 123003 (2010).

    Article  ADS  Google Scholar 

  17. S. Ibá˜ñez, X. Chen, E. Torrontegui, J. G. Muga, and A. Ruschhaupt, Phys. Rev. Lett. 109, 100403 (2012).

    Article  ADS  Google Scholar 

  18. L. A. Wu, P. Zanardi, and D. A. Lidar, Phys. Rev. Lett. 95, 130501 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  19. E. Sjöqvist, D. M. Tong, L. M. Andersson, B. Hessmo, M. Johansson, and K. Singh, New J. Phys. 14, 103035 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  20. G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C. Kwek, Phys. Rev. Lett. 109, 170501 (2012).

    Article  ADS  Google Scholar 

  21. V. A. Mousolou, and E. Sjöqvist, Phys. Rev. A 89, 022117 (2014).

    Article  ADS  Google Scholar 

  22. T. Čadež,_J. H. Jefferson, and A. Ramsăk, Phys. Rev. Lett. 112, 150402 (2014).

    Article  Google Scholar 

  23. Z. T. Liang, Y. X. Du, W. Huang, Z. Y. Xue, and H. Yan, Phys. Rev. A 89, 062312 (2014).

    Article  ADS  Google Scholar 

  24. J. Zhang, L. C. Kwek, E. Sjöqvist, D. M. Tong, and P. Zanardi, Phys. Rev. A 89, 042302 (2014).

    Article  ADS  Google Scholar 

  25. G. Xu, and G. Long, Sci. Rep. 4, 6814 (2015).

    Article  Google Scholar 

  26. G. F. Xu, C. L. Liu, P. Z. Zhao, and D. M. Tong, Phys. Rev. A 92, 052302 (2015).

    Article  ADS  Google Scholar 

  27. J. Zhou, W. C. Yu, Y. M. Gao, and Z. Y. Xue, Opt. Express 23, 14027 (2015).

    Article  ADS  Google Scholar 

  28. Z. Y. Xue, J. Zhou, and Z. D. Wang, Phys. Rev. A 92, 022320 (2015).

    Article  ADS  Google Scholar 

  29. Z. Y. Xue, J. Zhou, Y. M. Chu, and Y. Hu, Phys. Rev. A 94, 022331 (2016).

    Article  ADS  Google Scholar 

  30. P. Z. Zhao, G. F. Xu, and D. M. Tong, Phys. Rev. A 94, 062327 (2016).

    Article  ADS  Google Scholar 

  31. E. Herterich, and E. Sjöqvist, Phys. Rev. A 94, 052310 (2016).

    Article  ADS  Google Scholar 

  32. V. Azimi Mousolou, Europhys. Lett. 117, 10006 (2017).

    Article  ADS  Google Scholar 

  33. G. F. Xu, P. Z. Zhao, T. H. Xing, E. Sjöqvist, and D. M. Tong, Phys. Rev. A 95, 032311 (2017).

    Article  ADS  Google Scholar 

  34. Z. Y. Xue, F. L. Gu, Z. P. Hong, Z. H. Yang, D. W. Zhang, Y. Hu, and J. Q. You, Phys. Rev. Appl. 7, 054022 (2017).

    Article  ADS  Google Scholar 

  35. G. F. Xu, P. Z. Zhao, D. M. Tong, and E. Sjöqvist, Phys. Rev. A 95, 052349 (2017).

    Article  ADS  Google Scholar 

  36. P. Z. Zhao, G. F. Xu, Q. M. Ding, E. Sjöqvist, and D. M. Tong, Phys. Rev. A 95, 062310 (2017).

    Article  ADS  Google Scholar 

  37. V. Azimi Mousolou, Phys. Rev. A 96, 012307 (2017).

    Article  ADS  Google Scholar 

  38. A. A. Abdumalikov Jr, J. M. Fink, K. Juliusson, M. Pechal, S. Berger, A. Wallraff, and S. Filipp, Nature 496, 482 (2013).

    Article  ADS  Google Scholar 

  39. G. Feng, G. Xu, and G. Long, Phys. Rev. Lett. 110, 190501 (2013).

    Article  ADS  Google Scholar 

  40. H. Li, Y. Liu, and G. L. Long, Sci. China-Phys. Mech. Astron. 60, 080311 (2017).

    Article  ADS  Google Scholar 

  41. C. Zu, W. B. Wang, L. He, W. G. Zhang, C. Y. Dai, F. Wang, and L. M. Duan, Nature 514, 72 (2014).

    Article  ADS  Google Scholar 

  42. S. Arroyo-Camejo, A. Lazariev, S. W. Hell, and G. Balasubramanian, Nat. Commun. 5, 4870 (2014).

    Article  ADS  Google Scholar 

  43. Y. Sekiguchi, N. Niikura, R. Kuroiwa, H. Kano, and H. Kosaka, Nat. Photon 11, 309 (2017).

    Article  ADS  Google Scholar 

  44. B. B. Zhou, P. C. Jerger, V. O. Shkolnikov, F. J. Heremans, G. Burkard, and D. D. Awschalom, Phys. Rev. Lett. 119, 140503 (2017).

    Article  ADS  Google Scholar 

  45. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, Nature 466, 730 (2010).

    Article  ADS  Google Scholar 

  46. F. Shi, X. Rong, N. Xu, Y.Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. S. Schoenfeld, W. Harneit, M. Feng, and J. Du, Phys. Rev. Lett. 105, 040504 (2010).

    Article  ADS  Google Scholar 

  47. C. G. Yale, B. B. Buckley, D. J. Christle, G. Burkard, F. J. Heremans, L. C. Bassett, and D. D. Awschalom, Proc. Natl. Acad. Sci. 110, 7595 (2013).

    Article  ADS  Google Scholar 

  48. C. G. Yale, F. J. Heremans, B. B. Zhou, A. Auer, G. Burkard, and D. D. Awschalom, Nat. Photon 10, 184 (2016).

    Article  ADS  Google Scholar 

  49. J. N. Becker, J. Görlitz, C. Arend, M. Markham, and C. Becher, Nat. Commun. 7, 13512 (2016).

    Article  ADS  Google Scholar 

  50. B. B. Zhou, A. Baksic, H. Ribeiro, C. G. Yale, F. J. Heremans, P. C. Jerger, A. Auer, G. Burkard, A. A. Clerk, and D. D. Awschalom, Nat. Phys. 13, 330 (2016).

    Article  Google Scholar 

  51. N. B. Manson, J. P. Harrison, and M. J. Sellars, Phys. Rev. B 74, 104303 (2006).

    Article  ADS  Google Scholar 

  52. D. Møller, L. B. Madsen, and K. Mølmer, Phys. Rev. A 75, 062302 (2007).

    Article  ADS  Google Scholar 

  53. N. V. Vitanov, J. Phys. B-At. Mol. Opt. Phys. 31, 709 (1998).

    Article  ADS  Google Scholar 

  54. Y. S. Park, A. K. Cook, and H. Wang, Nano Lett. 6, 2075 (2006).

    Article  ADS  Google Scholar 

  55. P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, Appl. Phys. Lett. 95, 191115 (2009).

    Article  ADS  Google Scholar 

  56. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, Opt. Lett. 23, 247 (1998).

    Article  ADS  Google Scholar 

  57. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).

    Article  ADS  Google Scholar 

  58. A. Serafini, S. Mancini, and S. Bose, Phys. Rev. Lett. 96, 010503 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhengYuan Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Liu, B., Hong, Z. et al. Fast holonomic quantum computation based on solid-state spins with all-optical control. Sci. China Phys. Mech. Astron. 61, 010312 (2018). https://doi.org/10.1007/s11433-017-9119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9119-8

Keywords

Navigation