Skip to main content
Log in

NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The rapid development of superconducting nanowire single-photon detectors over the past decade has led to numerous advances in quantum information technology. The record for the best system detection efficiency at an incident photon wavelength of 1550 nm is 93%. This performance was attained from a superconducting nanowire single-photon detector made of amorphous WSi; such detectors are usually operated at sub-Kelvin temperatures. In this study, we first demonstrate superconducting nanowire single-photon detectors made of polycrystalline NbN with system detection efficiency of 90.2% for 1550-nm-wavelength photons at 2.1 K, accessible with a compact cryocooler. The system detection efficiency saturated at 92.1% when the temperature was lowered to 1.8 K. We expect the results lighten the practical and high performance superconducting nanowire single-photon detectors to quantum information and other high-end applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Giustina, M. A. M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J. Å. Larsson, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, J. Beyer, T. Gerrits, A. E. Lita, L. K. Shalm, S. W. Nam, T. Scheidl, R. Ursin, B. Wittmann, and A. Zeilinger, Phys. Rev. Lett. 115, 250401 (2015), arXiv: 1511.03190.

    Article  ADS  Google Scholar 

  2. L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, Phys. Rev. Lett. 115, 250402 (2015), arXiv: 1511.03189.

    Article  ADS  Google Scholar 

  3. Q. C. Sun, Y. L. Mao, S. J. Chen, W. Zhang, Y. F. Jiang, Y. B. Zhang, W. J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T. Y. Chen, L. X. You, X. F. Chen, Z. Wang, J. Y. Fan, Q. Zhang, and J. W. Pan, Nat. Photon 10, 671 (2016).

    Article  ADS  Google Scholar 

  4. Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, Phys. Rev. Lett. 113, 190501 (2014), arXiv: 1407.8012.

    Article  ADS  Google Scholar 

  5. E. Knill, R. Laflamme, and G. J. Milburn, Nature 409, 46 (2001).

  6. R. H. Hadfield, G. Johansson, Superconducting Devices in Quantum Optics (Springer, Berlin, 2016).

    Book  Google Scholar 

  7. J. Zhang, M. A. Itzler, H. Zbinden, and J. W. Pan, Light Sci Appl 4, e286 (2015).

    Article  Google Scholar 

  8. X. Hu, Y. Cheng, C. Gu, X. Zhu, and H. Liu, Sci. Bull. 60, 1980 (2015).

    Article  Google Scholar 

  9. A. E. Lita, A. J. Miller, and S. W. Nam, Opt. Express 16, 3032 (2008).

    Article  ADS  Google Scholar 

  10. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, Nat. Photon 7, 210 (2013), arXiv: 1209.5774.

    Article  ADS  Google Scholar 

  11. V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, Opt. Express 23, 33792 (2015), arXiv: 1504.02793.

    Article  ADS  Google Scholar 

  12. S. N. Dorenbos, P. Forn-Díaz, T. Fuse, A. H. Verbruggen, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, Appl. Phys. Lett. 98, 251102 (2011).

    Article  ADS  Google Scholar 

  13. A. Engel, A. Aeschbacher, K. Inderbitzin, A. Schilling, K. Il’in, M. Hofherr, M. Siegel, A. Semenov, and H. W. Hübers, Appl. Phys. Lett. 100, 062601 (2012), arXiv: 1110.4576.

    Article  ADS  Google Scholar 

  14. Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, Supercond. Sci. Technol. 27, 095012 (2014), arXiv: 1309.7074.

    Article  ADS  Google Scholar 

  15. A. Semenov, A. Engel, H. W. Hübers, K. Il’in, and M. Siegel, Eur. Phys. J. B 47, 495 (2005).

    Article  ADS  Google Scholar 

  16. F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, Nano Lett. 11, 2048 (2011), arXiv: 1012.4149.

    Article  ADS  Google Scholar 

  17. J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, Phys. Rev. Lett. 112, 117604 (2014).

    Article  ADS  Google Scholar 

  18. D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, Opt. Express 21, 1440 (2013).

    Article  ADS  Google Scholar 

  19. T. Yamashita, S. Miki, H. Terai, and Z. Wang, Opt. Express 21, 27177 (2013), arXiv: 1305.2672.

    Article  ADS  Google Scholar 

  20. S. Chen, L. You, W. Zhang, X. Yang, H. Li, L. Zhang, Z. Wang, and X. Xie, Opt. Express 23, 10786 (2015), arXiv: 1504.04713.

    Article  ADS  Google Scholar 

  21. S. Miki, M. Yabuno, T. Yamashita, and H. Terai, Opt. Express 25, 6796 (2017), arXiv: 1701.07247.

    Article  ADS  Google Scholar 

  22. L. Zhang, C. Wan, M. Gu, R. Xu, S. Zhang, L. Kang, J. Chen, and P. Wu, Sci. Bull. 60, 1434 (2015).

    Article  Google Scholar 

  23. C. Delacour, J. Claudon, J. P. Poizat, B. Pannetier, V. Bouchiat, R. Espiau de Lamaestre, J. C. Villegier, M. Tarkhov, A. Korneev, B. Voronov, and G. Gol’tsman, Appl. Phys. Lett. 90, 191116 (2007).

    Article  ADS  Google Scholar 

  24. A. Semenov, B. Günther, U. Böttger, H. W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, Phys. Rev. B 80, 054510 (2009).

    Article  ADS  Google Scholar 

  25. K. Smirnov, Y. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, Appl. Phys. Express 8, 022501 (2015).

    Article  ADS  Google Scholar 

  26. S. V. Polyakov, and A. L. Migdall, Opt. Express 15, 1390 (2007).

    Article  ADS  Google Scholar 

  27. J. Bardeen, Rev. Mod. Phys. 34, 667 (1962).

    Article  ADS  Google Scholar 

  28. D. Henrich, P. Reichensperger, M. Hofherr, J. M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, Phys. Rev. B 86, 144504 (2012), arXiv: 1204.0616.

    Article  ADS  Google Scholar 

  29. H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, Phys. Rev. Lett. 117, 190501 (2016), arXiv: 1606.06821.

    Article  ADS  Google Scholar 

  30. X. L. Wang, L. K. Chen, W. Li, H. L. Huang, C. Liu, C. Chen, Y. H. Luo, Z. E. Su, D. Wu, Z. D. Li, H. Lu, Y. Hu, X. Jiang, C. Z. Peng, L. Li, N. L. Liu, Y. A. Chen, C. Y. Lu, and J. W. Pan, Phys. Rev. Lett. 117, 210502 (2016), arXiv: 1605.08547.

    Article  ADS  Google Scholar 

  31. W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, arXiv: 1609.00429.

  32. I. E. Zadeh, W. N. L. Johannes, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, arXiv: 1611.02726.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiXing You.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., You, L., Li, H. et al. NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature. Sci. China Phys. Mech. Astron. 60, 120314 (2017). https://doi.org/10.1007/s11433-017-9113-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9113-4

Keywords

Navigation