Skip to main content

Magnetic field annihilation and reconnection driven by femtosecond lasers in inhomogeneous plasma

Abstract

The process of fast magnetic reconnection driven by intense ultra-short laser pulses in underdense plasma is investigated by particle-in-cell simulations. In the wakefield of such laser pulses, quasi-static magnetic fields at a few mega-Gauss are generated due to nonvanishing cross product ∆(n /γ) × p. Excited in an inhomogeneous plasma of decreasing density, the quasi-static magnetic field structure is shown to drift quickly both in lateral and longitudinal directions. When two parallel-propagating laser pulses with close focal spot separation are used, such field drifts can develop into magnetic reconnection (annihilation) in their overlapping region, resulting in the conversion of magnetic energy to kinetic energy of particles. The reconnection rate is found to be much higher than the value obtained in the Hall magnetic reconnection model. Our work proposes a potential way to study magnetic reconnection-related physics with short-pulse lasers of terawatt peak power only.

This is a preview of subscription content, access via your institution.

References

  1. M. Yamada, Phys. Plasmas 14, 058102 (2007).

    ADS  Article  Google Scholar 

  2. Y. L. Ping, J. Y. Zhong, Z. M. Sheng, X. G. Wang, B. Liu, Y. T. Li, X. Q. Yan, X. T. He, J. Zhang, and G. Zhao, Phys. Rev. E 89, 031101 (2014).

    ADS  Article  Google Scholar 

  3. J. Zhong, Y. Li, X. Wang, J. Wang, Q. Dong, C. Xiao, S. Wang, X. Liu, L. Zhang, L. An, F. Wang, J. Zhu, Y. Gu, X. He, G. Zhao, and J. Zhang, Nat. Phys. 6, 984 (2010).

    Article  Google Scholar 

  4. E. N. Parker, J. Geophys. Res. 62, 509 (1957).

    ADS  Article  Google Scholar 

  5. J. B. Taylor, Rev. Mod. Phys. 58, 741 (1986).

    ADS  Article  Google Scholar 

  6. Q. L. Dong, S. J. Wang, Q. M. Lu, C. Huang, D. W. Yuan, X. Liu, X. X. Lin, Y. T. Li, H. G. Wei, J. Y. Zhong, J. R. Shi, S. E. Jiang, Y. K. Ding, B. B. Jiang, K. Du, X. T. He, M. Y. Yu, C. S. Liu, S. Wang, Y. J. Tang, J. Q. Zhu, G. Zhao, Z. M. Sheng, and J. Zhang, Phys. Rev. Lett. 108, 215001 (2012), arXiv: 1203.4036.

    ADS  Article  Google Scholar 

  7. P. M. Nilson, L. Willingale, M. C. Kaluza, C. Kamperidis, S. Minardi, M. S. Wei, P. Fernandes, M. Notley, S. Bandyopadhyay, M. Sherlock, R. J. Kingham, M. Tatarakis, Z. Najmudin, W. Rozmus, R. G. Evans, M. G. Haines, A. E. Dangor, and K. Krushelnick, Phys. Plasmas 15, 092701 (2008).

    ADS  Article  Google Scholar 

  8. X. X. Pei, J. Y. Zhong, Y. Sakawa, Z. Zhang, K. Zhang, H. G. Wei, Y. T. Li, Y. F. Li, B. J. Zhu, T. Sano, Y. Hara, S. Kondo, S. Fujioka, G. Y. Liang, F. L. Wang, and G. Zhao, Phys. Plasmas 23, 032125 (2016).

    ADS  Article  Google Scholar 

  9. R. L. Richard, R. D. Sydora, and M. Ashour-Abdalla, Phys. Fluids B-Plasma Phys. 2, 488 (1990).

    Article  Google Scholar 

  10. W. Fox, A. Bhattacharjee, and K. Germaschewski, Phys. Plasmas 19, 056309 (2012).

    ADS  Article  Google Scholar 

  11. C. K. Li, F. H. Séguin, J. A. Frenje, J. R. Rygg, R. D. Petrasso, R. P. J. Town, O. L. Landen, J. P. Knauer, and V. A. Smalyuk, Phys. Rev. Lett. 99, 055001 (2007).

    ADS  Article  Google Scholar 

  12. M. G. Haines, Phys. Rev. Lett. 78, 254 (1997).

    ADS  Article  Google Scholar 

  13. X. G. Wang, C. J. Xiao, Z. Y. Pu, and J. Q. Wang, Chin. Sci. Bull. 57, 1369 (2012).

    Article  Google Scholar 

  14. K. Huang, C. Huang, Q. Dong, Q. Lu, S. Lu, Z. Sheng, S. Wang, and J. Zhang, Phys. Plasmas 24, 041406 (2017).

    ADS  Article  Google Scholar 

  15. S. Lu, Q. Lu, C. Huang, Q. Dong, J. Zhu, Z. Sheng, S. Wang, and J. Zhang, New J. Phys. 16, 083021 (2014).

    ADS  Article  Google Scholar 

  16. S. Lu, Q. Lu, F. Guo, Z. Sheng, H. Wang, and S. Wang, New J. Phys. 18, 013051 (2016).

    ADS  Article  Google Scholar 

  17. Y. J. Gu, O. Klimo, D. Kumar, S. V. Bulanov, T. Z. Esirkepov, S. Weber, and G. Korn, Phys. Plasmas 22, 103113 (2015).

    ADS  Article  Google Scholar 

  18. Y. J. Gu, Q. Yu, O. Klimo, T. Z. Esirkepov, S. V. Bulanov, S. Weber, and G. Korn, High Pow Laser Sci. Eng. 4, e19 (2016).

    Article  Google Scholar 

  19. Y. Q. Cui, Z. M. Sheng, Q. M. Lu, Y. T. Li, and J. Zhang, Sci. China-Phys. Mech. Astron. 58, 105201 (2015), arXiv: 1506.00049.

    ADS  Article  Google Scholar 

  20. S. Mondal, V. Narayanan, W. J. Ding, A. D. Lad, B. Hao, S. Ahmad, W. M. Wang, Z. M. Sheng, S. Sengupta, P. Kaw, A. Das, and G. R. Kumar, Proc. Natl. Acad. Sci. 109, 8011 (2012).

    ADS  Article  Google Scholar 

  21. Z. M. Sheng, J. Meyer-Ter-Vehn, and A. Pukhov, Phys. Plasmas 5, 3764 (1998).

    ADS  Article  Google Scholar 

  22. S. K. Yadav, A. Das, and P. Kaw, Phys. Plasmas 15, 062308 (2008), arXiv: 0804.3934.

    ADS  Article  Google Scholar 

  23. J. Nycander, and M. B. Isichenko, Phys. Fluids B-Plasma Phys. 2, 2042 (1990).

    Article  Google Scholar 

  24. T. Tajima, and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979).

    ADS  Article  Google Scholar 

  25. Z. M. Sheng, K. Mima, Y. Sentoku, K. Nishihara, and J. Zhang, Phys. Plasmas 9, 3147 (2002).

    ADS  Article  Google Scholar 

  26. R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu, C. Ren, W. B. Mori, S. Deng, S. Lee, T. Katsouleas, and J. C. Adam, in Lecture Notes in Computer Science: Proceedings of International Conference on Computational Science (ICCS) 2002 (Springer, Berlin, Heidelberg), 2331: 342–351.

    MATH  Google Scholar 

  27. F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, 2nd ed (Plenum Press, New York, 1984).

    Book  Google Scholar 

  28. Q. M. Lu, R. S. Wang, J. L. Xie, C. Huang, S. Lu, and S. Wang, Chin. Sci. Bull. 56, 1174 (2011).

    Article  Google Scholar 

  29. J. Guo, Chin. Sci. Bull. 54, 456 (2009).

    Google Scholar 

  30. H. Che, J. F. Drake, and M. Swisdak, Nature 474, 184 (2011).

    ADS  Article  Google Scholar 

  31. J. D. Huba, and L. I. Rudakov, Phys. Rev. Lett. 93, 175003 (2004).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhengMing Sheng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, F., Chen, M. et al. Magnetic field annihilation and reconnection driven by femtosecond lasers in inhomogeneous plasma. Sci. China Phys. Mech. Astron. 60, 115211 (2017). https://doi.org/10.1007/s11433-017-9086-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9086-9

Keywords

  • magnetic reconnection
  • laser wakefield
  • magnetic field generation