Skip to main content
Log in

Scaling laws of aquatic locomotion

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In recent years studies of aquatic locomotion have provided some remarkable insights into the many features of fish swimming performances. This paper derives a scaling relation of aquatic locomotion C D(Re)2 = (Sw)2 and its corresponding log law and power law. For power scaling law, (Sw)2 = β n Re 2−1/n , which is valid within the full spectrum of the Reynolds number Re = UL/ν from low up to high, can simply be expressed as the power law of the Reynolds number Re and the swimming number Sw = ωAL/ν as Re ∝ (Sw)σ, with σ = 2 for creeping flows, σ = 4=3 for laminar flows, σ = 10=9 and σ = 14=13 for turbulent flows. For log law this paper has derived the scaling law as SwRe=(ln Re+1:287), which is even valid for a much wider range of the Reynolds number Re. Both power and log scaling relationships link the locomotory input variables that describe the swimmer’s gait A; ω via the swimming number Sw to the locomotory output velocity U via the longitudinal Reynolds number Re, and reveal the secret input-output relationship of aquatic locomotion at different scales of the Reynolds number

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Taylor, Proc. R. Soc. Lond. A 214, 158 (1952).

    Article  ADS  Google Scholar 

  2. R. Bainbridge, J. Exp. Biol. 35, 109 (1958).

    Google Scholar 

  3. H. Hertel, Structure, Form, Movement (Reinhold, New York, 1966).

    Google Scholar 

  4. M. J. Lighthill, Proc. R. Soc. B-Biol. Sci. 179, 125 (1971).

    Article  ADS  Google Scholar 

  5. T. J. Pedley, Scale Effects in Animal Locomotion (Cambridge University Press, London, 1977).

    Google Scholar 

  6. T. L. Daniel, Integr. Comp. Biol. 24, 121 (1984).

    Google Scholar 

  7. L. J. Fauci, and C. S. Peskin, J. Comp. Phys. 77, 85 (1988).

    Article  ADS  Google Scholar 

  8. J. W. Glasheen, and T. A. McMahon, Nature 380, 340 (1996).

    Article  ADS  Google Scholar 

  9. S. Vogel, Life in Moving Fluids: The Physical Biology of Flow (Princeton University Press, Princeton, 1996).

    Google Scholar 

  10. E. G. Drucker, and G. V. Lauder, J. Exp. Biol. 202, 2393 (1999).

    Google Scholar 

  11. M. S. Triantafyllou, G. S. Triantafyllou, and D. K. P. Yue, Annu. Rev. Fluid Mech. 32, 33 (2000).

    Article  ADS  Google Scholar 

  12. R. M. Alexander, Principles of Animal Locomotion (Princeton University Press, Princeton, 2003).

    Book  Google Scholar 

  13. A. A. Biewener, Animal Locomotion (Oxford University Press, Oxford, 2003).

    Google Scholar 

  14. G. V. Lauder, Annu. Rev. Mar. Sci. 7, 521 (2015).

    Article  ADS  Google Scholar 

  15. F. E. Fish, and G. V. Lauder, Annu. Rev. Fluid Mech. 38, 193 (2006).

    Article  ADS  Google Scholar 

  16. J. W. M. Bush, and D. L. Hu, Annu. Rev. Fluid Mech. 38, 339 (2006).

    Article  ADS  Google Scholar 

  17. T. Y. Wu, Annu. Rev. Fluid Mech. 43, 25 (2011).

    Article  ADS  Google Scholar 

  18. M. Gazzola, M. Argentina, and L. Mahadevan, Nat. Phys. 10, 758 (2014).

    Article  Google Scholar 

  19. J. Baumgart, and B. M. Friedrich, Nat. Phys. 10, 711 (2014).

    Article  Google Scholar 

  20. L. Prandtl, Über FlüVerhandlungen des III Internationalen Mathematiker-Kongresses, Heidelberg, Germany, 8-13 August 1904, edited by B. G. Teubner and Leipzig, pp. 485–491.

  21. H. Blasius, Grenzschichten in Flüssigkeiten mit kleiner Reibung [in German], Dissertation for the Doctoral Degree (University Göttingen, Göttingen, 1907).

    Google Scholar 

  22. L. Prandtl, Z. Flugtech. 5, 140 (1914).

    Google Scholar 

  23. L. Prandtl, Z. Angew. Math. Mech. 1, 431 (1921).

    Article  Google Scholar 

  24. T. V. Kármán, Z. Angew. Math. Mech. 1, 233 (1921).

    Article  Google Scholar 

  25. T. von Kármán, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Fachgruppe 1 (Mathematik), 5, 58 (1930).

    Google Scholar 

  26. H. Schlichting, Boundary Layer Theory (McGraw-Hill, New York, 1979).

    MATH  Google Scholar 

  27. L. Prandtl, Essentials of Fluid Dynamics (Hafner, New York, 1952).

    MATH  Google Scholar 

  28. P. W. Bridgman, Dimensional Analysis (Yale University Press, New Haven, 1922).

    MATH  Google Scholar 

  29. L. I. Sedov, Similarity and Dimensional Analysis in Mechanics (Academic Press, New York, 1959).

    MATH  Google Scholar 

  30. B. Sun, Dimensional Analysis and Lie Group (China High Education Press, Beijing, 2016).

    Google Scholar 

  31. B. Sun, Phys. Eng. 6, 11 (2016).

    Google Scholar 

  32. B. Sun, Mod. Phys. Lett. B 30, 1650297 (2016).

    Article  ADS  Google Scholar 

  33. B. Sun, Appl. Math. Mech. Engl. Ed. 38, 765 (2017).

    Article  Google Scholar 

  34. I. Marusic, B. J. McKeon, P. A. Monkewitz, H. M. Nagib, A. J. Smits, and K. R. Sreenivasan, Phys. Fluids 22, 065103 (2010).

    Article  ADS  Google Scholar 

  35. X. Chen, and Z. S. She, Sci. China-Phys. Mech. Astron. 59, 114711 (2016).

    Article  Google Scholar 

  36. P. Luchini, Phys. Rev. Lett. 118, 224501 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BoHua Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B. Scaling laws of aquatic locomotion. Sci. China Phys. Mech. Astron. 60, 104711 (2017). https://doi.org/10.1007/s11433-017-9073-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9073-1

Keywords

Navigation