Skip to main content
Log in

β-distribution for Reynolds stress and turbulent heat flux in relaxation turbulent boundary layer of compression ramp

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

A challenge in the study of turbulent boundary layers (TBLs) is to understand the non-equilibrium relaxation process after sep-aration and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Rotta, Prog. Aerospace Sci. 2, 1 (1962).

    Article  ADS  Google Scholar 

  2. L. Castillo, and W. K. George, AIAA J. 39, 41 (2001).

    Article  ADS  Google Scholar 

  3. D. C. Wilcox, AIAA J. 46, 2823 (2008).

    Article  ADS  Google Scholar 

  4. A. J. Smits, and D. H. Wood, Annu. Rev. Fluid Mech. 17, 321 (1985).

    Article  ADS  Google Scholar 

  5. P. Bradshaw, and F. Y. F. Wong, J. Fluid Mech. 52, 113 (1972).

    Article  ADS  Google Scholar 

  6. H. H. Nigim, Phys. Fluids 8, 548 (1996).

    Article  ADS  Google Scholar 

  7. I. P. Castro, and E. Epik, J. Fluid Mech. 374, 91 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  8. M. P. Escudier, A. Abdel-Hameed, M. W. Johnson, and C. J. Sutcliffe, Exp. Fluids 25, 491 (1998).

    Article  Google Scholar 

  9. D. S. Dolling, AIAA J. 39, 1517 (2001).

    Article  ADS  Google Scholar 

  10. H. Babinsky, and J. K. Harvey, Shock Wave Boundary Layer Interactions (Cambridge University Press, Cambridge, 2011).

    Book  MATH  Google Scholar 

  11. M. Jayaram, M. W. Taylor, and A. J. Smits, J. Fluid Mech. 175, 343 (1987).

    Article  ADS  Google Scholar 

  12. D. R. Webster, D. B. DeGraaff, and J. K. Eaton, J. Fluid Mech. 323, 53 (1996).

    Article  ADS  Google Scholar 

  13. S. E. Belcher, N. Jerram, and J. C. R. Hunt, J. Fluid Mech. 488, 369 (2003).

    Article  ADS  Google Scholar 

  14. I. Jacobi, and B. J. McKeon, J. Fluid Mech. 677, 179 (2011).

    Article  ADS  Google Scholar 

  15. R. A. Antonia, H. Q. Danh, and A. Prabhu, J. Fluid Mech. 80, 153 (1977).

    Article  ADS  Google Scholar 

  16. F. K. Lu, Q. Li, and C. Liu, Prog. Aerospace Sci. 53, 30 (2012).

    Article  ADS  Google Scholar 

  17. J. F. Debieve, P. Dupont, D. R. Smith, and A. J. Smits, AIAA J. 35, 51 (1997).

    Article  ADS  Google Scholar 

  18. R. A. Antonia, Y. Zhu, and M. Sokolov, Phys. Fluids 7, 2465 (1995).

    Article  ADS  Google Scholar 

  19. U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov (Cambridge University Press, Cambridge, 2009).

    Google Scholar 

  20. Z. S. She, X. Chen, Y. Wu, and F. Hussain, Acta Mech. Sin. 26, 847 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  21. Z. S. She, X. Chen, and F. Hussain, arxiv: 1112.6312.

  22. Z. S. She, Y. Wu, X. Chen, and F. Hussain, New J. Phys. 14, 093054 (2012).

    Article  ADS  Google Scholar 

  23. X. Chen, F. Hussain, and Z. S. She, EPL 115, 34001 (2016).

    Article  ADS  Google Scholar 

  24. X. Chen, B. B.Wei, F. Hussain, and Z. S. She, Phys. Rev. E 93, 011102 (2016).

    Article  ADS  Google Scholar 

  25. X. Chen, and Z. S. She, Sci. China-Phys. Mech. Astron. 59, 114711 (2016).

    Article  Google Scholar 

  26. M. J. Xiao, Z. S. She, in A Reynolds stress length model for wall turbulence: Proceedings of 69th Annual Meeting of the APS Division of Fluid Dynamics (Portland, 2016).

    Google Scholar 

  27. X. L. Li, D. X. Fu, Y. W. Ma, and X. Liang, Acta Mech. Sin. 26, 795 (2010).

    Article  ADS  Google Scholar 

  28. X. L. Li, D. X. Fu, Y. W. Ma, and X. Liang, Sci. China-Phys. Mech. Astron. 53, 1651 (2010).

    Article  ADS  Google Scholar 

  29. F. Tong, C. Yu, Z. Tang, and X. Li, Comp. Fluids 149, 56 (2017).

    Article  Google Scholar 

  30. S. Pirozzoli, F. Grasso, and T. B. Gatski, Phys. Fluids 16, 530 (2004).

    Article  ADS  Google Scholar 

  31. M. P. Martín, E. M. Taylor, M. Wu, and V. G. Weirs, J. Comp. Phys. 220, 270 (2006).

    Article  ADS  Google Scholar 

  32. P. B. Bookey, and C. Wyckham, in New experimental data of STBLI at DNS/LES accessible Reynolds numbers: Proceedings of 35th AIAA Fluid Dynamics Conference and Exhibit (Toronto, 2005), pp. 2005–4899.

    Google Scholar 

  33. M. Wu, and M. P. Martin, AIAA J. 45, 879 (2007).

    Article  ADS  Google Scholar 

  34. F. M. White, Viscous Fluid Flow (McGraw-Hill, New York, 2006).

    Google Scholar 

  35. Y. Yan, C. Chen, P. Lu, and C. Liu, Aerospace Sci. Tech. 30, 226 (2013).

    Article  Google Scholar 

  36. C. Q. Liu, Y. Q. Wang, Y. Yang, and Z. W. Duan, Sci. China-Phys. Mech. Astron. 59, 684711 (2016).

    Article  Google Scholar 

  37. Y. Andreopoulos, J. H. Agui, and G. Briassulis, Annu. Rev. Fluid Mech. 32, 309 (2000).

    Article  ADS  Google Scholar 

  38. J. Délery, and J. P. Dussauge, Shock Waves 19, 453 (2009).

    Article  ADS  Google Scholar 

  39. J. C. Anyiwo, and D. M. Bushnell, AIAA J. 20, 893 (1982).

    Article  ADS  Google Scholar 

  40. T. A. Zang, M. Y. Hussaini, and D. M. Bushnell, AIAA J. 22, 13 (1982).

    Article  ADS  Google Scholar 

  41. G. S. Settles, T. J. Fitzpatrick, and S. M. Bogdonoff, AIAA J. 17, 579 (1979).

    Article  ADS  Google Scholar 

  42. P. L. Ardonceau, AIAA J. 22, 1254 (1984).

    Article  ADS  Google Scholar 

  43. Z. Harun, J. P. Monty, R. Mathis, and I. Marusic, J. Fluid Mech. 715, 477 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  44. E. F. Spina, A. J. Smits, and S. K. Robinson, Annu. Rev. Fluid Mech. 26, 287 (1994).

    Article  ADS  Google Scholar 

  45. W. W. Liou, G. Huang, and T. H. Shih, Comp. Fluids 29, 275 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11452002, 11372008, and 11521091), and the Aeronautical Science Foundation of China (Grant No. 2014ZA71001). The authors thank XinLiang Li (Institute of Mechanics, Chinese Academy of Sciences) for his help on the DNS, which was performed on TianHe-1 at the National Supercomputer Center in Tianjin, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhenSu She.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Bi, W., Li, S. et al. β-distribution for Reynolds stress and turbulent heat flux in relaxation turbulent boundary layer of compression ramp. Sci. China Phys. Mech. Astron. 60, 124711 (2017). https://doi.org/10.1007/s11433-017-9072-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9072-8

Keywords

Navigation