Skip to main content
Log in

Quasi-static motion of microparticles at the depinning contact line of an evaporating droplet on PDMS surface

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In this paper, evaporation of sessile water droplets containing fluorescent polystyrene (PS) microparticles on polydimethylsiloxane (PDMS) surfaces with different curing ratios was studied experimentally using laser confocal microscopy. At the beginning, there were some microparticles located at the contact line and some microparticles moved towards the line. Due to contact angle hysteresis, at first both the contact line and the microparticles were pinned. With the depinning contact line, the microparticles moved together spontaneously. Using the software ImageJ, the location of contact lines at different time were acquired and the circle centers and radii of the contact lines were obtained via the least square method. Then the average distance of two neighbor contact lines at a certain time interval was obtained to characterize the motion of the contact line. Fitting the distance-time curve at the depinning contact line stage with polynomials and differentiating the polynomials with time, we obtained the velocity and acceleration of both the contact line and the microparticles located at the line. The velocity and the maximum acceleration were, respectively, of the orders of 1 μm/s and 20-200 nm/s2, indicating that the motion of the microparticles located at the depinning contact line was quasi-static. Finally, we presented a theoretical model to describe the quasi-static process, which may help in understanding both self-pinning and depinning of microparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Nature 389, 827 (1997).

    Article  ADS  Google Scholar 

  2. H. Hu, and R. G. Larson, J. Phys. Chem. B 110, 7090 (2006).

    Article  Google Scholar 

  3. Y. P. Zhao, Physical Mechanics of Surfaces and Interfaces (Science Press, Beijing, 2012).

    Google Scholar 

  4. U. Thiele, Adv. Colloid Interf. Sci. 206, 399 (2014).

    Article  Google Scholar 

  5. P. J. Yunker, T. Still, M. A. Lohr, and A. G. Yodh, Nature 476, 308 (2011).

    Article  ADS  Google Scholar 

  6. H. B. Eral, D. M. Augustine, M. H. G. Duits, and F. Mugele, Soft Matter 7, 4954 (2011).

    Article  ADS  Google Scholar 

  7. D. Mampallil, H. B. Eral, D. van den Ende, and F. Mugele, Soft Matter 8, 10614 (2012).

    Article  ADS  Google Scholar 

  8. T. Still, P. J. Yunker, and A. G. Yodh, Langmuir 28, 4984 (2012).

    Article  Google Scholar 

  9. L. Cui, J. Zhang, X. Zhang, L. Huang, Z. Wang, Y. Li, H. Gao, S. Zhu, T. Wang, and B. Yang, ACS Appl. Mater. Interf. 4, 2775 (2012).

    Article  Google Scholar 

  10. A. Crivoi, and F. Duan, Langmuir 29, 12067 (2013).

    Article  Google Scholar 

  11. M. Majumder, C. S. Rendall, J. A. Eukel, J. Y. L. Wang, N. Behabtu, C. L. Pint, T. Y. Liu, A. W. Orbaek, F. Mirri, J. Nam, A. R. Barron, R. H. Hauge, H. K. Schmidt, and M. Pasquali, J. Phys. Chem. B 116, 6536 (2012).

    Article  Google Scholar 

  12. Y. F. Li, Y. J. Sheng, and H. K. Tsao, Langmuir 29, 7802 (2013).

    Article  Google Scholar 

  13. Z. Q. Lin, Evaporative Self-assembly of Ordered Complex Structures (World Scientific Publishing Co. Pte. Ltd., Singapore, 2012).

    Book  Google Scholar 

  14. B. M. Weon, and J. H. Je, Phys. Rev. E 82, 015305 (2010).

    Article  ADS  Google Scholar 

  15. J. Jung, Y. W. Kim, J. Y. Yoo, J. Koo, and Y. T. Kang, Anal. Chem. 82, 784 (2010).

    Article  Google Scholar 

  16. T. S. Wong, T. H. Chen, X. Shen, and C. M. Ho, Anal. Chem. 83, 1871 (2011).

    Article  Google Scholar 

  17. V. H. Chhasatia, and Y. Sun, Soft Matter 7, 10135 (2011).

    Article  ADS  Google Scholar 

  18. B. M. Weon, and J. H. Je, Phys. Rev. Lett. 110, 028303 (2013).

    Article  ADS  Google Scholar 

  19. R. Bhardwaj, X. Fang, P. Somasundaran, and D. Attinger, Langmuir 26, 7833 (2010).

    Article  Google Scholar 

  20. Q. Yuan, and Y. P. Zhao, J. Fluid. Mech. 716, 171 (2013).

    Article  ADS  Google Scholar 

  21. Q. Yuan, X. Huang, and Y. P. Zhao, Phys. Fluids 26, 092104 (2014).

    Article  ADS  Google Scholar 

  22. Y. Q. Li, H. A. Wu, and F. C. Wang, Langmuir 32, 12676 (2016).

    Article  Google Scholar 

  23. A. S. Sangani, C. Lu, K. Su, and J. A. Schwarz, Phys. Rev. E 80, 011603 (2009).

    Article  ADS  Google Scholar 

  24. F. Shao, T. W. Ng, J. Efthimiadis, A. Somers, and W. Schwalb, J. Colloid Interf. Sci. 377, 421 (2012).

    Article  Google Scholar 

  25. Y. Zhao, Theor. Appl. Mech. Lett. 4, 034002 (2014).

    Article  Google Scholar 

  26. Y. P. Zhao, Sci. China-Phys. Mech. Astron. 59, 114631 (2016).

    Article  Google Scholar 

  27. F. C. Wang, and Y. P. Zhao, Soft Matter 7, 8628 (2011).

    Article  ADS  Google Scholar 

  28. Y. S. Yu, Z. Wang, and Y. P. Zhao, J. Colloid Interf. Sci. 365, 254 (2012).

    Article  Google Scholar 

  29. M. C. Lopes, and E. Bonaccurso, Soft Matter 8, 7875 (2012).

    Article  ADS  Google Scholar 

  30. Y. S. Yu, Z. Q. Wang, and Y. P. Zhao, Acta Mech. Sin. 29, 799 (2013).

    Article  ADS  Google Scholar 

  31. M. C. Lopes, and E. Bonaccurso, Soft Matter 9, 7942 (2013).

    Article  ADS  Google Scholar 

  32. L. Chen, G. K. Auernhammer, and E. Bonaccurso, Soft Matter 7, 9084 (2011).

    Article  ADS  Google Scholar 

  33. L. Chen, E. Bonaccurso, and M. E. R. Shanahan, Langmuir 29, 1893 (2013).

    Article  Google Scholar 

  34. X. Zheng, G. P. Kong, and Z. H. Silber-Li, Acta Mech. Sin. 29, 411 (2013).

    Article  ADS  Google Scholar 

  35. X. L. Xia, X. Zheng, X. F. Huang, J. Z. Zhou, and Y. S. Yu, Appl. Math. Mech 8, 495 (2017).

    Article  Google Scholar 

  36. M. Elimelech, J. Gregory, X. Jia, and R. A. Williams, Particle Deposition & Aggregation (Butterworth Heinemann Publications, Woburn, 1998), pp. 38–46.

    Google Scholar 

  37. Y. S. Yu, AIP Adv. 6, 095124 (2016).

    Article  ADS  Google Scholar 

  38. C. J. Drummond, and D. Y. C. Chan, Langmuir 13, 3890 (1997).

    Article  Google Scholar 

  39. A. Koh, G. Gillies, J. Gore, and B. R. Saunders, J. Colloid Interf. Sci. 227, 390 (2000).

    Article  Google Scholar 

  40. A. Nakao, Y. Suzuki, and M. Iwaki, J. Colloid Interf. Sci. 197, 257 (1998).

    Article  Google Scholar 

  41. B. J. Kirby, and E. F. Hasselbrink, Electrophoresis 25, 203 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Song Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, YS., Xia, XL., Zheng, X. et al. Quasi-static motion of microparticles at the depinning contact line of an evaporating droplet on PDMS surface. Sci. China Phys. Mech. Astron. 60, 094612 (2017). https://doi.org/10.1007/s11433-017-9060-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9060-3

Keywords

Navigation