Advertisement

Majorana zero mode in the vortex of an artificial topological superconductor

  • Hao-Hua Sun
  • Jin-Feng JiaEmail author
Invited Review

Abstract

Majorana fermion (MF), an exotic particle that is identical to its own antiparticle, was recently found in solid matter as a quasiparticle excitation, the Majorana zero mode (MZM), in the vortex of an artificial topological superconductor (TSC). This artificial TSC, first proposed by Fu and Kane in 2008, is a heterostructure made of a topological insulator Bi2Te3 and an s-wave superconductor NbSe2. This paper will briefly review the experimental progresses based on the Bi2Te3/NbSe2 heterostructure. All evidences are self-consistent and reveal that the MZM exists in the center of vortex. Those experimental results are also supported by theory. This finding is a milestone in the research of Majorana fermions in solid state physics and a starting point of MZM’s application in topological quantum computation.

Keywords

Majorana fermion Majorana zero mode topological superconductor heterostructure vortex 

PACS number(s)

74.45.+c 03.65.Vf 74.25.Ha 74.55.+v 

References

  1. 1.
    E. Majorana, Nuovo Cim 14, 171 (1937).ADSCrossRefGoogle Scholar
  2. 2.
    F. T. Avignone III, S. R. Elliott, and J. Engel, Rev. Mod. Phys. 80, 481 (2008), arXiv: 0708.1033.ADSCrossRefGoogle Scholar
  3. 3.
    F. Wilczek, Nat. Phys. 5, 614 (2009).CrossRefGoogle Scholar
  4. 4.
    A. A. Abrikosov, Sov. Phys. JETP-USSR, 5, 1174 (1957).Google Scholar
  5. 5.
    C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008), arXiv: 0707.1889.ADSCrossRefGoogle Scholar
  6. 6.
    S. Das Sarma, C. Nayak, and S. Tewari, Phys. Rev. B 73, 220502 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    M. Z. Hasan, and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010), arXiv: 1002.3895.ADSCrossRefGoogle Scholar
  8. 8.
    X. L. Qi, and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011), arXiv: 1008.2026.ADSCrossRefGoogle Scholar
  9. 9.
    L. Fu, and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008), arXiv: 0707.1692.ADSCrossRefGoogle Scholar
  10. 10.
    W. L. McMillan, Phys. Rev. 175, 537 (1968).ADSCrossRefGoogle Scholar
  11. 11.
    R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010), arXiv: 1002.4033.ADSCrossRefGoogle Scholar
  12. 12.
    A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman, Nat. Phys. 8, 887 (2012), arXiv: 1205.7073.CrossRefGoogle Scholar
  13. 13.
    M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q. Xu, Nano Lett. 12, 6414 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Science 336, 1003 (2012), arXiv: 1204.2792.ADSCrossRefGoogle Scholar
  15. 15.
    M. X. Wang, C. Liu, J. P. Xu, F. Yang, L. Miao, M. Y. Yao, C. L. Gao, C. Shen, X. Ma, X. Chen, Z. A. Xu, Y. Liu, S. C. Zhang, D. Qian, J. F. Jia, and Q. K. Xue, Science 336, 52. (2012), arXiv: 1112.1772.ADSCrossRefGoogle Scholar
  16. 16.
    A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung, and X. Li, Phys. Rev. Lett. 110, 126406 (2013), arXiv: 1212.1101.ADSCrossRefGoogle Scholar
  17. 17.
    S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Science 346, 602 (2014), arXiv: 1410.0682.ADSCrossRefGoogle Scholar
  18. 18.
    J. P. Xu, C. Liu, M. X. Wang, J. Ge, Z. L. Liu, X. Yang, Y. Chen, Y. Liu, Z. A. Xu, C. L. Gao, D. Qian, F. C. Zhang, and J. F. Jia, Phys. Rev. Lett. 112, 217001 (2014), arXiv: 1312.3713.ADSCrossRefGoogle Scholar
  19. 19.
    A. Haim, E. Berg, F. von Oppen, and Y. Oreg, Phys. Rev. Lett. 114, 166406 (2015), arXiv: 1411.0673.ADSCrossRefGoogle Scholar
  20. 20.
    J. P. Xu, M. X. Wang, Z. L. Liu, J. F. Ge, X. Yang, C. Liu, Z. A. Xu, D. Guan, C. L. Gao, D. Qian, Y. Liu, Q. H. Wang, F. C. Zhang, Q. K. Xue, and J. F. Jia, Phys. Rev. Lett. 114, 017001 (2015), arXiv: 1312.7110.ADSCrossRefGoogle Scholar
  21. 21.
    H. H. Sun, K. W. Zhang, L. H. Hu, C. Li, G. Y. Wang, H. Y. Ma, Z. A. Xu, C. L. Gao, D. D. Guan, Y. Y. Li, C. Liu, D. Qian, Y. Zhou, L. Fu, S. C. Li, F. C. Zhang, and J. F. Jia, Phys. Rev. Lett. 116, 257003 (2016), arXiv: 1603.02549.ADSCrossRefGoogle Scholar
  22. 22.
    H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Nat. Phys. 5, 438 (2009).CrossRefGoogle Scholar
  23. 23.
    Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys. 5, 398 (2009), arXiv: 0908.3513.CrossRefGoogle Scholar
  24. 24.
    Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Science 325, 178 (2009).ADSCrossRefGoogle Scholar
  25. 25.
    C. L. Song, Y. L. Wang, Y. P. Jiang, Y. Zhang, C. Z. Chang, L. Wang, K. He, X. Chen, J. F. Jia, Y. Wang, Z. Fang, X. Dai, X. C. Xie, X. L. Qi, S. C. Zhang, Q. K. Xue, and X. Ma, Appl. Phys. Lett. 97, 143118 (2010), arXiv: 1007.0809.ADSCrossRefGoogle Scholar
  26. 26.
    S. Beaupré, P. L. T. Boudreault, and M. Leclerc, Adv. Mater. 22, E6 (2010).CrossRefGoogle Scholar
  27. 27.
    L. He, F. Xiu, Y. Wang, A. V. Fedorov, G. Huang, X. Kou, M. Lang, W. P. Beyermann, J. Zou, and K. L. Wang, J. Appl. Phys. 109, 103702 (2011).ADSCrossRefGoogle Scholar
  28. 28.
    X. Liu, D. J. Smith, H. Cao, Y. P. Chen, J. Fan, Y. H. Zhang, R. E. Pimpinella, M. Dobrowolska, and J. K. Furdyna, J. Vacuum Sci. Tech. B 30, 02B103 (2012).CrossRefGoogle Scholar
  29. 29.
    M. X. Wang, P. Li, J. P. Xu, Z. L. Liu, J. F. Ge, G. Y. Wang, X. Yang, Z. A. Xu, S. H. Ji, C. L. Gao, D. Qian, W. Luo, C. Liu, and J. F. Jia, New J. Phys. 16, 123043 (2014).ADSCrossRefGoogle Scholar
  30. 30.
    S. Y. Xu, N. Alidoust, I. Belopolski, A. Richardella, C. Liu, M. Neupane, G. Bian, S. H. Huang, R. Sankar, C. Fang, B. Dellabetta, W. Dai, Q. Li, M. J. Gilbert, F. Chou, N. Samarth, and M. Z. Hasan, Nat. Phys. 10, 943 (2014), arXiv: 1410.5405.CrossRefGoogle Scholar
  31. 31.
    C. Caroli, P. G. De Gennes, and J. Matricon, Phys. Lett. 9, 307 (1964).ADSCrossRefGoogle Scholar
  32. 32.
    R. G. Mints, and A. L. Rachmanov, Solid State Commun. 16, 747 (1975).ADSCrossRefGoogle Scholar
  33. 33.
    Y. E. Kraus, A. Auerbach, H. A. Fertig, and S. H. Simon, Phys. Rev. Lett. 101, 267002 (2008), arXiv: 0811.2557.ADSCrossRefGoogle Scholar
  34. 34.
    R. S. Akzyanov, A. V. Rozhkov, A. L. Rakhmanov, and F. Nori, Phys. Rev. B 89, 085409 (2014), arXiv: 1307.0923.ADSCrossRefGoogle Scholar
  35. 35.
    J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys. Rev. B 82, 094522 (2010), arXiv: 0912.4508.ADSCrossRefGoogle Scholar
  36. 36.
    Z. Z. Li, F. C. Zhang, and Q. H. Wang, Sci. Rep. 4, 6363 (2014).ADSCrossRefGoogle Scholar
  37. 37.
    T. Kawakami, and X. Hu, Phys. Rev. Lett. 115, 177001 (2015), arXiv: 1506.03194.ADSCrossRefGoogle Scholar
  38. 38.
    J. J. He, T. K. Ng, P. A. Lee, and K. T. Law, Phys. Rev. Lett. 112, 037001 (2014), arXiv: 1309.1528.ADSCrossRefGoogle Scholar
  39. 39.
    G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982).ADSCrossRefGoogle Scholar
  40. 40.
    M. Bode, Rep. Prog. Phys. 66, 523 (2003).ADSCrossRefGoogle Scholar
  41. 41.
    R. Wiesendanger, Rev. Mod. Phys. 81, 1495 (2009).ADSCrossRefGoogle Scholar
  42. 42.
    D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).ADSCrossRefGoogle Scholar
  43. 43.
    L. A. Landau, S. Plugge, E. Sela, A. Altland, S. M. Albrecht, and R. Egger, Phys. Rev. Lett. 116, 050501 (2016), arXiv: 1509.05345.ADSCrossRefGoogle Scholar
  44. 44.
    S. Vijay, T. H. Hsieh, and L. Fu, Phys. Rev. X 5, 041038 (2015), arXiv: 1504.01724.Google Scholar
  45. 45.
    S. Vijay, and L. Fu, Phys. Scr. T168, 014002 (2016), arXiv: 1509.08134.ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and AstronomyShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Collaborative Innovation Center of Advanced MicrostructuresNanjingChina

Personalised recommendations