Asymmetric nanoparticle may go “active” at room temperature

Article
  • 60 Downloads

Abstract

Using molecular dynamics simulations, we show that an asymmetrically shaped nanoparticle in dilute solution possesses a spontaneously curved trajectory within a finite time interval, instead of the generally expected random walk. This unexpected dynamic behavior has a similarity to that of active matters, such as swimming bacteria, cells, or even fish, but is of a different physical origin. The key to the curved trajectory lies in the non-zero resultant force originated from the imbalance of the collision forces acted by surrounding solvent molecules on the asymmetrically shaped nanoparticle during its orientation regulation. Theoretical formulae based on microscopic observations have been derived to describe this non-zero force and the resulting motion of the asymmetrically shaped nanoparticle.

Keywords

asymmetric nanoparticle curved trajectory active 

References

  1. 1.
    P. Kral, L. Vukovic, N. Patra, B. Wang, K. Sint, and A. Titov, Chem-Inform 43, 1 (2012).Google Scholar
  2. 2.
    J. H. Bahng, B. Yeom, Y. Wang, S. O. Tung, J. D. Hoff, and N. Kotov, Nature 517, 596 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    L. Zhao, C. Wang, J. Liu, B. Wen, Y. Tu, Z. Wang, and H. Fang, Phys. Rev. Lett. 112, 78301 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    D. Chandler, Nature 437, 640 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    P. Hervés, M. Pérez-Lorenzo, L. M. Liz-Marzán, J. Dzubiella, Y. Lu, and M. Ballauff, Chem. Soc. Rev. 41, 5577 (2012).CrossRefGoogle Scholar
  6. 6.
    J. Yang, G. Shi, Y. Tu, and H. Fang, Angew. Chem. Int. Ed. 53, 10190 (2014).CrossRefGoogle Scholar
  7. 7.
    B. Song, Q. Sun, H. Li, B. Ge, J. S. Pan, A. T. S. Wee, Y. Zhang, S. Huang, R. Zhou, X. Gao, F. Huang, and H. Fang, Angew. Chem. Int. Ed. 53, 6358 (2014).CrossRefGoogle Scholar
  8. 8.
    P. Ball, Chem. Rev. 108, 74 (2008).CrossRefGoogle Scholar
  9. 9.
    R. Philips, J. Kondev, and J. Theriot, Physical Biology of the Cell (Garland Science, New York, 2008).Google Scholar
  10. 10.
    B. L. De Groot, and H. Grubmüller, Science 294, 2353 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    Y. Von Hansen, S. Gekle, and R. R. Netz, Phys. Rev. Lett. 111, 118103 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    C. Di Rienzo, V. Piazza, E. Gratton, F. Beltram, and F. Cardarelli, Nat. Commun. 5, 5891 (2014).CrossRefGoogle Scholar
  13. 13.
    R. M. Robertson, S. Laib, and D. E. Smith, Proc. Natl. Acad. Sci. 103, 7310 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    I. Echeverria, D. E. Makarov, and G. A. Papoian, J. Am. Chem. Soc. 136, 8708 (2014).CrossRefGoogle Scholar
  15. 15.
    A. Einstein, Ann. Phys. 322, 549 (1905).CrossRefGoogle Scholar
  16. 16.
    A. Einstein, Z. Elektrotech. Elektrochem. 13, 41 (1907).CrossRefGoogle Scholar
  17. 17.
    D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, Oxford, 1987).Google Scholar
  18. 18.
    M. Doi, and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1988).Google Scholar
  19. 19.
    Y. Han, A. M. Alsayed, M. Nobili, J. Zhang, T. C. Lubensky, and A. G. Yodh, Science 314, 626 (2006).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    T. Li, and M. G. Raizen, Ann. Phys. 525, 281 (2013), arXiv: 1211.1458.CrossRefGoogle Scholar
  21. 21.
    R. Huang, I. Chavez, K. M. Taute, B. Lukic, S. Jeney, M. G. Raizen, and E. L. Florin, Nat. Phys. 7, 576 (2011).CrossRefGoogle Scholar
  22. 22.
    A. Schlaich, E. W. Knapp, and R. R. Netz, Phys. Rev. Lett. 117, 48001 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    H. Qiu, X. C. Zeng, and W. Guo, ACS Nano 9, 9877 (2015).CrossRefGoogle Scholar
  24. 24.
    L. Ma, A. Gaisinskaya-Kipnis, N. Kampf, and J. Klein, Nat. Commun. 6, 6060 (2015).ADSCrossRefGoogle Scholar
  25. 25.
    A. Barati Farimani, N. R. Aluru, and E. Tajkhorshid, Appl. Phys. Lett. 105, 083702 (2014).ADSCrossRefGoogle Scholar
  26. 26.
    T. Franosch, M. Grimm, M. Belushkin, F. M. Mor, G. Foffi, L. Forró, and S. Jeney, Nature 478, 85 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    P. N. Pusey, Science 332, 802 (2011).ADSCrossRefGoogle Scholar
  28. 28.
    N. Arai, K. Yasuoka, and X. C. Zeng, J. Am. Chem. Soc. 130, 7916 (2008).CrossRefGoogle Scholar
  29. 29.
    A. Reinhardt, and D. Frenkel, Soft Matter 12, 6253 (2016), arXiv: 1606.05257.ADSCrossRefGoogle Scholar
  30. 30.
    X. Zhou, G. Liu, K. Yamato, Y. Shen, R. Cheng, X. Wei, W. Bai, Y. Gao, H. Li, Y. Liu, F. Liu, D. M. Czajkowsky, J. Wang, M. J. Dabney, Z. Cai, J. Hu, F. V. Bright, L. He, X. C. Zeng, Z. Shao, and B. Gong, Nat. Commun. 3, 949 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    T. Guérin, O. Bénichou, and R. Voituriez, Nat. Chem. 4, 568 (2012), arXiv: 1209.1538.CrossRefGoogle Scholar
  32. 32.
    M. J. Berridge, and R. F. Irvine, Nature 341, 197 (1989).ADSCrossRefGoogle Scholar
  33. 33.
    M. Rodbell, Nature 284, 17 (1980).ADSCrossRefGoogle Scholar
  34. 34.
    N. A. Campbell, and J. B. Reece, Biology (Benjamin Cummings, San Francisco, 2002).Google Scholar
  35. 35.
    B. Barbour, and M. Häusser, Trends Neurosci. 20, 377 (1997).CrossRefGoogle Scholar
  36. 36.
    R. Wan, C. Wang, X. Lei, G. Zhou, and H. Fang, Phys. Rev. Lett. 115, 195901 (2015).ADSCrossRefGoogle Scholar
  37. 37.
    P. Guo, Y. Tu, J. Yang, C. Wang, N. Sheng, and H. Fang, Phys. Rev. Lett. 115, 186101 (2015).ADSCrossRefGoogle Scholar
  38. 38.
    Y. Huang, C. Zhu, L. Wang, X. Cao, Y. Su, X. Jiang, S. Meng, J. Zhao, and X. C. Zeng, Sci. Adv. 2, e1501010 (2016).ADSCrossRefGoogle Scholar
  39. 39.
    G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Nature 414, 188 (2001).ADSCrossRefGoogle Scholar
  40. 40.
    J. Yang, S. Meng, L. F. Xu, and E. G. Wang, Phys. Rev. Lett. 92, 146102 (2004).ADSCrossRefGoogle Scholar
  41. 41.
    B. Wang, and P. Král, Phys. Rev. Lett. 101, 46103 (2008).ADSCrossRefGoogle Scholar
  42. 42.
    I. Kosztin, and K. Schulten, Phys. Rev. Lett. 93, 238102 (2004).ADSCrossRefGoogle Scholar
  43. 43.
    C. Zhu, H. Li, Y. Huang, X. C. Zeng, and S. Meng, Phys. Rev. Lett. 110, 126101 (2013).ADSCrossRefGoogle Scholar
  44. 44.
    R. Zhou, X. Huang, C. J. Margulis, and B. J. Berne, Science 305, 1605 (2004).ADSCrossRefGoogle Scholar
  45. 45.
    Q. L. Zhang, W. Z. Jiang, J. Liu, R. D. Miao, and N. Sheng, Phys. Rev. Lett. 110, 254501 (2013), arXiv: 1304.0361.ADSCrossRefGoogle Scholar
  46. 46.
    N. Sheng, Y. Tu, P. Guo, R. Wan, and H. Fang, J. Hydrodyn. Ser. B 24, 969 (2012).CrossRefGoogle Scholar
  47. 47.
    N. Sheng, Y. S. Tu, P. Guo, R. Z. Wan, and H. P. Fang, Sci. China-Phys. Mech. Astron. 56, 1047 (2013), arXiv: 1307.6963.ADSCrossRefGoogle Scholar
  48. 48.
    M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao, and R. A. Simha, Rev. Mod. Phys. 85, 1143 (2013).ADSCrossRefGoogle Scholar
  49. 49.
    C. Krüger, G. Klös, C. Bahr, and C. C. Maass, Phys. Rev. Lett. 117, 48003 (2016), arXiv: 1605.03396.ADSCrossRefGoogle Scholar
  50. 50.
    P. K. Ghosh, Y. Li, G. Marchegiani, and F. Marchesoni, J. Chem. Phys. 143, 211101 (2015), arXiv: 1511.06113.ADSCrossRefGoogle Scholar
  51. 51.
    É. Fodor, C. Nardini, M. E. Cates, J. Tailleur, P. Visco, and F. Van Wijland, Phys. Rev. Lett. 117, 38103 (2016), arXiv: 1604.00953.ADSCrossRefGoogle Scholar
  52. 52.
    P. Romanczuk, and L. Schimansky-Geier, Phys. Rev. Lett. 106, 230601 (2011).ADSCrossRefGoogle Scholar
  53. 53.
    I. Buttinoni, G. Volpe, F. Kümmel, G. Volpe, and C. Bechinger, J. Phys.-Condens. Matter 24, 284129 (2012), arXiv: 1110.2202.CrossRefGoogle Scholar
  54. 54.
    H. Wioland, F. G. Woodhouse, J. Dunkel, and R. E. Goldstein, Nat. Phys. 12, 341 (2016), arXiv: 1511.05000.CrossRefGoogle Scholar
  55. 55.
    H. Brenner, Chem. Eng. Sci. 18, 1 (1963).CrossRefGoogle Scholar
  56. 56.
    H. Brenner, and R. G. Cox, J. Fluid Mech. 17, 561 (1963).ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    H. Brenner, J. Colloid Sci. 20, 104 (1965).CrossRefGoogle Scholar
  58. 58.
    A. Chakrabarty, A. Konya, F. Wang, J. V. Selinger, K. Sun, and Q. H. Wei, Phys. Rev. Lett. 111, 160603 (2013), arXiv: 1308.3656.ADSCrossRefGoogle Scholar
  59. 59.
    G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. 126, 014101 (2007), arXiv: 0803.4060.ADSCrossRefGoogle Scholar
  60. 60.
    B. Hess, C. Kutzner, D. Van Der Spoel, and E. Lindahl, J. Chem. Theor. Comput. 4, 435 (2008).CrossRefGoogle Scholar
  61. 61.
    I. C. Yeh, and G. Hummer, J. Phys. Chem. B 108, 15873 (2004).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.College of Physics Science and TechnologyYangzhou UniversityJiangsuChina
  3. 3.School of Mathematical, Physical and Computational SciencesUniversity of ReadingReadingUK

Personalised recommendations