Skip to main content
Log in

Experimental simulation of the Unruh effect on an NMR quantum simulator

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The Unruh effect is one of the most fundamental manifestations of the fact that the particle content of a field theory is observer dependent. However, there has been so far no experimental verification of this effect, as the associated temperatures lie far below any observable threshold. Recently, physical phenomena, which are of great experimental challenge, have been investigated by quantum simulations in various fields. Here we perform a proof-of-principle simulation of the evolution of fermionic modes under the Unruh effect with a nuclear magnetic resonance (NMR) quantum simulator. By the quantum simulator, we experimentally demonstrate the behavior of Unruh temperature with acceleration, and we further investigate the quantum correlations quantified by quantum discord between two fermionic modes as seen by two relatively accelerated observers. It is shown that the quantum correlations can be created by the Unruh effect from the classically correlated states. Our work may provide a promising way to explore the quantum physics of accelerated systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. C. W. Davies, J. Phys. A 8, 609 (1975).

    Article  ADS  Google Scholar 

  2. W. G. Unruh, Phys. Rev. D 14, 870 (1976).

    Article  ADS  Google Scholar 

  3. L. C. B. Crispino, A. Higuchi, and G. E. A. Matsas, Rev. Mod. Phys. 80, 787 (2008).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. S. W. Hawking, Nature 248, 30 (1974).

    Article  ADS  Google Scholar 

  5. G. W. Gibbons, and S. W. Hawking, Phys. Rev. D 15, 2738 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  6. W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981).

    Article  ADS  Google Scholar 

  7. J. Rogers, Phys. Rev. Lett. 61, 2113 (1988).

    Article  ADS  Google Scholar 

  8. W. G. Unruh, Phys. Rep. 307, 163 (1998).

    Article  ADS  Google Scholar 

  9. P. Chen, and T. Tajima, Phys. Rev. Lett. 83, 256 (1999).

    Article  ADS  Google Scholar 

  10. M. Aspachs, G. Adesso, and I. Fuentes-Schuller, Phys. Rev. Lett. 105, 151301 (2010).

  11. S. Weinfurtner, E. W. Tedford, M. C. J. Penrice, W. G. Unruh, and G. A. Lawrence, Phys. Rev. Lett. 106, 021302 (2011).

    Article  ADS  Google Scholar 

  12. E. Martin-Martinez, I. Fuentes-Schuller, and R. B. Mann, Phys. Rev. Lett. 107, 131301 (2011).

    Article  ADS  Google Scholar 

  13. J. Hu, and H. Yu, Phys. Rev. A 85, 032105 (2012).

    Article  ADS  Google Scholar 

  14. R. Feynman, Int. J. Theor. Phys. 21, 467 (1982).

    Article  MathSciNet  Google Scholar 

  15. S. Lloyd, Science 273, 1073 (1996).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. I. Buluta, and F. Nori, Science 326, 108 (2009).

    Article  ADS  Google Scholar 

  17. M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch, Nature 415, 39 (2002).

    Article  ADS  Google Scholar 

  18. J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and M. Greiner, Nature 472, 307 (2011).

    Article  ADS  Google Scholar 

  19. Y. Lu, G.-R. Feng, Y.-S. Li, and G.-L. Long, Sci. Bull. 60, 241 (2015).

    Article  Google Scholar 

  20. C. Zhang, C.-F. Li, and G.-C. Guo, Sci. Bull. 60, 249 (2015).

    Article  MathSciNet  Google Scholar 

  21. H. P. Büchler, M. Hermele, S. D. Huber, M. P. A. Fisher, and P. Zoller, Phys. Rev. Lett. 95, 040402 (2005).

    Article  Google Scholar 

  22. R. Gerritsma, G. Kirchmair, F. Z¨ahringer, E. Solano, R. Blatt, and C. F. Roos, Nature 463, 68 (2010).

    Article  ADS  Google Scholar 

  23. Y. M. Liu, and R. W. Liu, Sci. China-Phys. Mech. Astron. 57, 2259 (2014).

    Article  ADS  Google Scholar 

  24. P. M. Alsing, J. P. Dowling, and G. J. Milburn, Phys. Rev. Lett. 94, 220401 (2005).

    Article  ADS  Google Scholar 

  25. P. D. Nation, M. P. Blencowe, A. J. Rimberg, and E. Buks, Phys. Rev. Lett. 103, 087004 (2009).

    Article  ADS  Google Scholar 

  26. J. Steinhauer, Nat Phys. 10, 864 (2014).

    Article  Google Scholar 

  27. A. Spuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon, Science 309, 1704 (2005).

    Article  ADS  Google Scholar 

  28. J. Du, N. Xu, X. Peng, P. Wang, S. Wu, and D. Lu, Phys. Rev. Lett. 104, 030502 (2010).

    Article  ADS  Google Scholar 

  29. M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information, (Cambrigde University Press, Cambridge, 2000).

    MATH  Google Scholar 

  30. R. M. Gingrich, and C. Adami, Phys. Rev. Lett. 89, 270402 (2002).

    Article  Google Scholar 

  31. H. Li, and J. Du, Phys. Rev. A 68, 022108 (2003).

    Article  ADS  Google Scholar 

  32. P. M. Alsing, and G. J. Milburn, Phys. Rev. Lett. 91, 180404 (2003).

    Article  ADS  Google Scholar 

  33. A. Peres, and D. R. Terno, Rev. Mod. Phys. 76, 93 (2004).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. I. Fuentes-Schuller, and R. B. Mann, Phys. Rev. Lett. 95, 120404 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  35. P. M. Alsing, I. Fuentes-Schuller, R. B. Mann, and T. E. Tessier, Phys. Rev. A 74, 032326 (2006).

    Article  ADS  Google Scholar 

  36. A. Datta, Phys. Rev. A 80, 052304 (2009).

    Article  ADS  Google Scholar 

  37. J. Wang, J. Deng, and J. Jing, Phys. Rev. A 81, 052120 (2010).

    Article  ADS  Google Scholar 

  38. L. C. Céleri, A. G. S. Landulfo, R. M. Serra, and G. E. A. Matsas, Phys. Rev. A 81, 062130 (2010).

    Article  ADS  Google Scholar 

  39. D. E. Bruschi, J. Louko, E. Martín-Martínez, A. Dragan, and I. Fuentes-Schuller, Phys. Rev. A 82, 042332 (2010).

    Article  ADS  Google Scholar 

  40. E. Martín-Martínez, L. J. Garay, and J. León, Phys. Rev. D 82, 064006 (2010).

    Article  ADS  Google Scholar 

  41. M. Montero, and E. Martín-Martínez, Phys. Rev. A 85, 024301 (2012).

    Article  ADS  Google Scholar 

  42. J. Chang, and Y. Kwon, Phys. Rev. A 85, 032302 (2012).

    Article  ADS  Google Scholar 

  43. E. G. Brown, K. Cormier, E. Martín-Martínez, and R. B. Mann, Phys. Rev. A 86, 032108 (2012).

    Article  ADS  Google Scholar 

  44. M. Hwang, E. Jung, and D. Park, Class. Quantum Grav. 29, 224004 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  45. N. Metwally, and A. Sagheer, Quantum Inf. Proc. 13, 771 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  46. M. Ramzan, Quantum. Inf. Proc. 13, 259 (2014).

    Article  MATH  Google Scholar 

  47. L. Vandersypen, and I. Chuang, Rev. Mod. Phys. 76, 1037 (2004).

    Article  ADS  Google Scholar 

  48. H. Ollivier, and W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2001).

    Article  ADS  Google Scholar 

  49. L. Henderson, and V. Vedral, J. Phys. A-Math. Gen. 34, 6899 (2001).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  50. K. Modi, A. Brodutch, H. Cable, and T. Paterek, Rev. Mod. Phys. 84, 1655 (2012).

    Article  ADS  Google Scholar 

  51. M. Ali, A. R. P. Rau, and G. Alber, Phys. Rev. A 81, 042105 (2010).

    Article  ADS  Google Scholar 

  52. Y. Huang, Phys. Rev. A 88, 014302 (2013).

    Article  ADS  Google Scholar 

  53. D. G. Cory, A. F. Fahmy, and T. F. Havel, Proc. Natl. Acad. Sci. U.S.A. 94, 1634 (1997).

    Article  ADS  Google Scholar 

  54. I. L. Chuang, N. Gershenfeld, M. G. Kubinec, and D. W. Leung, Proc. R. Soc. A 454, 447 (1998).

    Article  ADS  MATH  Google Scholar 

  55. X. Peng, J. Zhang, J. Du, and D. Suter, Phys. Rev. A 81, 042327 (2010).

    Article  ADS  Google Scholar 

  56. R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions, (Oxford University Press, Oxford, 1987).

    Google Scholar 

  57. A. Streltsov, H. Kampermann, and D. Bruß, Phys. Rev. Lett. 107, 170502 (2011).

    Article  ADS  Google Scholar 

  58. F. Ciccarello, and V. Giovannetti, Phys. Rev. A 85, 010102 (2012).

    Article  ADS  Google Scholar 

  59. B. P. Lanyon, P. Jurcevic, C. Hempel, M. Gessner, V. Vedral, R. Blatt, and C. F. Roos, Phys. Rev. Lett. 111, 100504 (2013).

    Article  ADS  Google Scholar 

  60. S. Hamieh, R. Kobes, and H. Zaraket, Phys. Rev. A 70, 052325 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to HongWei Chen or JiangFeng Du.

Additional information

Contributed by JiangFeng Du (CAS academician)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, F., Chen, H., Rong, X. et al. Experimental simulation of the Unruh effect on an NMR quantum simulator. Sci. China Phys. Mech. Astron. 59, 630302 (2016). https://doi.org/10.1007/s11433-016-5779-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-016-5779-7

Keywords

PACS number(s)

Navigation