Two-photon reduction: a cost-effective method for fabrication of functional metallic nanostructures

  • Sahar Tabrizi
  • YaoYu Cao
  • Han Lin
  • BaoHua JiaEmail author
Invited Review


Metallic nanostructures have underpinned plasmonic-based advanced photonic devices in a broad range of research fields over the last decade including physics, engineering, material science and bioscience. The key to realizing functional plasmonic resonances that can manipulate light at the optical frequencies relies on the creation of conductive metallic structures at the nanoscale with low structural defects. Currently, most plasmonic nanostructures are fabricated either by electron beam lithography (EBL) or by focused ion beam (FIB) milling, which are expensive, complicated and time-consuming. In comparison, the direct laser writing (DLW) technique has demonstrated its high spatial resolution and cost-effectiveness in three-dimensional fabrication of micro/nanostructures. Furthermore, the recent breakthroughs in superresolution nanofabrication and parallel writing have significantly advanced the fabrication resolution and throughput of the DLW method and made it one of the promising future nanofabrication technologies with low-cost and scalability. In this review, we provide a comprehensive summary of the state-of-the-art DLW fabrication technology for nanometer scale metallic structures. The fabrication mechanisms, different material choices, fabrication capability, including resolution, conductivity and structure surface smoothness, as well as the characterization methods and achievable devices for different applications are presented. In particular, the development trends of the field and the perspectives for future opportunities and challenges are provided at the end of the review. It has been demonstrated that the quality of the metallic structures fabricated using the DLW method is excellent compared with other methods providing a new and enabling platform for functional nanophotonic device fabrication.


two photon photoreduction metallic nanostructures nanofabrication plasmonics 


  1. 1.
    N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, Rep. Prog. Phys. 75, 036501 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    K. Terzaki, N. Vasilantonakis, A. Gaidukeviciute, C. Reinhardt, C. Fotakis, M. Vamvakaki, and M. Farsari, Opt. Mater. Express 1, 586 (2011).CrossRefGoogle Scholar
  3. 3.
    X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, Thin Solid Films 453-454, 518 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    H. Hidai, and H. Tokura, Appl. Surface Sci. 174, 118 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    D. Kim, S. Jeong, B. K. Park, and J. Moon, Appl. Phys. Lett. 89, 264101 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    A. Gupta, and R. Jagannathan, Appl. Phys. Lett. 51, 2254 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    T. Cacouris, G. Scelsi, P. Shaw, R. Scarmozzino, R. M. Osgood, and R. R. Krchnavek, Appl. Phys. Lett. 52, 1865 (1988).ADSCrossRefGoogle Scholar
  8. 8.
    A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, Adv. Mater. 23, 3018 (2011).CrossRefGoogle Scholar
  9. 9.
    S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K. T. Kim, Y. K. Yoon, A. Urbas, and P. N. Prasad, ACS Nano 5, 1947 (2011).Google Scholar
  10. 10.
    Y. Son, T. W. Lim, D. Y. Yang, P. Prabhakaran, K. S. Lee, J. Bosson, O. Stephan, and P. L. Baldeck, IJNM 6, 219 (2010).CrossRefGoogle Scholar
  11. 11.
    S. Y. Kang, K. Vora, and E. Mazur, Nanotechnology 26, 121001 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    Y. Cao, and M. Gu, Appl. Phys. Lett. 103, 213104 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    R. P. Seisyan, Tech. Phys. 56, 1061 (2011).CrossRefGoogle Scholar
  14. 14.
    L. J. Guo, Adv. Mater. 19, 495 (2007).CrossRefGoogle Scholar
  15. 15.
    C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, Appl. Surface Sci. 164, 111 (2000).ADSCrossRefGoogle Scholar
  16. 16.
    L. A. Giannuzzi, and F. A. Stevie, Micron 30, 197 (1999).CrossRefGoogle Scholar
  17. 17.
    X. Luo, and T. Ishihara, Appl. Phys. Lett. 84, 4780 (2004).ADSCrossRefGoogle Scholar
  18. 18.
    N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, Appl. Phys. Lett. 106, 093110 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    T. C. Chong, M. H. Hong, and L. P. Shi, Laser Photon. Rev. 4, 123 (2010).CrossRefGoogle Scholar
  21. 21.
    D. B. Chrisey, A. Pique, J. Fitz-Gerald, R. C. Y. Auyeung, R. A. McGill, H. D. Wu, and M. Duignan, Appl. Surface Sci. 154-155, 593 (2000).ADSCrossRefGoogle Scholar
  22. 22.
    M. M. Hossain, G. Chen, B. Jia, X. H. Wang, and M. Gu, Opt. Express 18, 9048 (2010).ADSCrossRefGoogle Scholar
  23. 23.
    M. M. Hossain, and M. Gu, Laser Photon. Rev. 8, 233 (2014).CrossRefGoogle Scholar
  24. 24.
    B. Jia, J. Li, and M. Gu, Aust. J. Chem. 60, 484 (2007).CrossRefGoogle Scholar
  25. 25.
    B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, Anal. Chem. 78, 3198 (2006).CrossRefGoogle Scholar
  26. 26.
    J. Li, B. Jia, G. Zhou, and M. Gu, Opt. Express 14, 10740 (2006).ADSCrossRefGoogle Scholar
  27. 27.
    Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, Nano Today 5, 435 (2010).CrossRefGoogle Scholar
  28. 28.
    E. B. Kley, Microelectronic Eng. 34, 261 (1997).CrossRefGoogle Scholar
  29. 29.
    F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, Appl. Phys. A 77, 229 (2003).ADSGoogle Scholar
  30. 30.
    C. N. LaFratta, D. Lim, K. O'Malley, T. Baldacchini, and J. T. Fourkas, Chem. Mater. 18, 2038 (2006).CrossRefGoogle Scholar
  31. 31.
    L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B. Huis in’tVeld, and V. Kovalenko, CIRP Ann.-Manuf. Tech. 60, 735 (2011).CrossRefGoogle Scholar
  32. 32.
    H. E. Williams, Z. Luo, and S. M. Kuebler, Opt. Express 20, 25030 (2012).ADSCrossRefGoogle Scholar
  33. 33.
    Q. Z. Zhao, J. R. Qiu, X. W. Jiang, E. W. Dai, C. H. Zhou, and C. S. Zhu, Opt. Express 13, 2089 (2005).ADSCrossRefGoogle Scholar
  34. 34.
    H. B. Sun, and S. Kawata, J. Lightw. Technol. 21, 624 (2003).ADSCrossRefGoogle Scholar
  35. 35.
    W. Zhang, and Y. L. Yao, J. Manuf. Sci. Eng. 124, 369 (2002).CrossRefGoogle Scholar
  36. 36.
    J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, Science 325, 1513 (2009).ADSCrossRefGoogle Scholar
  37. 37.
    N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nat. Mater. 7, 31 (2008).ADSCrossRefGoogle Scholar
  38. 38.
    S. Maruo, and J. T. Fourkas, Laser Photon. Rev. 2, 100 (2008).CrossRefGoogle Scholar
  39. 39.
    Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, Small 5, 1144 (2009).Google Scholar
  40. 40.
    T. Tanaka, A. Ishikawa, and S. Kawata, Appl. Phys. Lett. 88, 081107 (2006).ADSCrossRefGoogle Scholar
  41. 41.
    J. Li, M. M. Hossain, B. Jia, D. Buso, and M. Gu, Opt. Express 18, 4491 (2010).ADSCrossRefGoogle Scholar
  42. 42.
    Y. G. Bi, J. Feng, Y. F. Li, Y. L. Zhang, Y. S. Liu, L. Chen, Y. F. Liu, L. Guo, S. Wei, and H. B. Sun, ACS Photon. 1, 690 (2014).Google Scholar
  43. 43.
    Y. L. Zhang, L. Guo, H. Xia, Q. D. Chen, J. Feng, and H. B. Sun, Adv. Opt. Mater. 2, 10 (2014).ADSCrossRefGoogle Scholar
  44. 44.
    D. Lau, and S. Furman, Appl. Surface Sci. 255, 2159 (2008).ADSCrossRefGoogle Scholar
  45. 45.
    L. Huang, Y. Liu, L. C. Ji, Y. Q. Xie, T. Wang, and W. Z. Shi, Carbon 49, 2431 (2011).CrossRefGoogle Scholar
  46. 46.
    B. Li, X. Zhang, X. Li, L. Wang, R. Han, B. Liu, W. Zheng, X. Li, and Y. Liu, Chem. Commun. 46, 3499 (2010).CrossRefGoogle Scholar
  47. 47.
    S. Tabrizi, Y. Cao, B. P. Cumming, B. Jia, and M. Gu, Adv. Opt. Mater. 4, 529 (2016).CrossRefGoogle Scholar
  48. 48.
    N. V. Tkachenko, Optical Spectroscopy: Methods and Instrumentations (Elsevier, Amsterdam, 2006).Google Scholar
  49. 49.
    A. V. Kachynski, A. Pliss, A. N. Kuzmin, T. Y. Ohulchanskyy, A. Baev, J. Qu, and P. N. Prasad, Nat. Photon 8, 455 (2014).ADSCrossRefGoogle Scholar
  50. 50.
    A. Ishikawa, JLMN 7, 11 (2012).CrossRefGoogle Scholar
  51. 51.
    S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, Berlin, Heidelberg, Dordrecht, and New York, 2007).Google Scholar
  52. 52.
    G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, and A. G. Dillard, Opt. Lett. 20, 435 (1995).ADSCrossRefGoogle Scholar
  53. 53.
    K. Miura, J. R. Qiu, T. Mitsuyu, and K. Hirao, Proc. SPIE, 3618, 141 (1999).ADSCrossRefGoogle Scholar
  54. 54.
    J. Qiu, Chem. Record 4, 50 (2004).CrossRefGoogle Scholar
  55. 55.
    Y. Li, S. Chemerisov, and J. Lewellen, Phys. Rev. ST Accel. Beams 12, 020702 (2009).ADSCrossRefGoogle Scholar
  56. 56.
    D. W. Lewis, Resource Conservation by Use of Iron and Steel Slags, in Extending Aggregate Resources (American Society for Testing and Materials, 1982), pp. 31–42.CrossRefGoogle Scholar
  57. 57.
    Q. Liu, X. Duan, and C. Peng, Novel optical technologies for nanofabrication (Springer, New York, 2014).CrossRefGoogle Scholar
  58. 58.
    M. Sakamoto, M. Fujistuka, and T. Majima, J. Photochem. Photobio. C-Photochem. Rev. 10, 33 (2009).CrossRefGoogle Scholar
  59. 59.
    M. Bom, and E. Wolf, Principles of Optics (Pergamon, New York, 1980), pp. 747–754.Google Scholar
  60. 60.
    Z. Zhou, J. Xu, Y. Liao, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, Opt. Commun. 282, 1370 (2009).ADSCrossRefGoogle Scholar
  61. 61.
    A. S. Quick, H. Rothfuss, A. Welle, B. Richter, J. Fischer, M. Wegener, and C. Barner-Kowollik, Adv. Funct. Mater. 24, 3571 (2014).CrossRefGoogle Scholar
  62. 62.
    E. Kymakis, K. Savva, M. M. Stylianakis, C. Fotakis, and E. Stratakis, Adv. Funct. Mater. 23, 2742 (2013).CrossRefGoogle Scholar
  63. 63.
    K. Kaneko, H. B. Sun, X. M. Duan, and S. Kawata, Appl. Phys. Lett. 83, 1426 (2003).ADSCrossRefGoogle Scholar
  64. 64.
    W. J. Brown, S. G. Anderson, C. P. J. Barty, S. M. Betts, R. Booth, J. K. Crane, R. R. Cross, D. N. Fittinghoff, D. J. Gibson, F. V. Hartemann, E. P. Hartouni, J. Kuba, G. P. Le Sage, D. R. Slaughter, A. M. Tremaine, A. J. Wootton, P. T. Springer, and J. B. Rosenzweig, Phys. Rev. ST Accel. Beams 7, 060702 (2004).ADSCrossRefGoogle Scholar
  65. 65.
    H. Hada, Y. Yonezawa, Y. Yoshida Akio, and A. Kurakake, J. Phys. Chem. 80, 2728 (1976).Google Scholar
  66. 66.
    B. Fisette, and M. Meunier, Proc. SPIE, 5578, 677 (2004).ADSCrossRefGoogle Scholar
  67. 67.
    F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. Zhang, S. R. Marder, and J. W. Perry, Adv. Mater. 14, 194 (2002).CrossRefGoogle Scholar
  68. 68.
    T. Baldacchini, A. C. Pons, J. Pons, C. N. Lafratta, J. T. Fourkas, Y. Sun, and M. J. Naughton, Opt. Express 13, 1275 (2005).ADSCrossRefGoogle Scholar
  69. 69.
    N. Tsutsumi, K. Nagata, and W. Sakai, Appl. Phys. A 103, 421 (2011).ADSCrossRefGoogle Scholar
  70. 70.
    A. Ishikawa, T. Tanaka, and S. Kawata, Appl. Phys. Lett. 89, 113102 (2006).ADSCrossRefGoogle Scholar
  71. 71.
    Y. Y. Cao, X. Z. Dong, N. Takeyasu, T. Tanaka, Z. S. Zhao, X. M. Duan, and S. Kawata, Appl. Phys. A 96, 453 (2009).ADSCrossRefGoogle Scholar
  72. 72.
    W. E. Lu, Y. L. Zhang, M. L. Zheng, Y. P. Jia, J. Liu, X. Z. Dong, Z. S. Zhao, C. B. Li, Y. Xia, T. C. Ye, and X. M. Duan, Opt. Mater. Express 3, 1660 (2013).CrossRefGoogle Scholar
  73. 73.
    T. Itakura, K. Torigoe, and K. Esumi, Langmuir 11, 4129 (1995).CrossRefGoogle Scholar
  74. 74.
    B. B. Xu, R. Zhang, H. Wang, X. Q. Liu, L. Wang, Z. C. Ma, Q. D. Chen, X. Z. Xiao, B. Han, and H. B. Sun, Nanoscale 4, 6955 (2012).ADSCrossRefGoogle Scholar
  75. 75.
    W. E. Lu, M. L. Zheng, W. Q. Chen, Z. S. Zhao, and X. M. Duan, Phys. Chem. Chem. Phys. 14, 11930 (2012).CrossRefGoogle Scholar
  76. 76.
    Z. Gan, Y. Cao, R. A. Evans, and M. Gu, Nat. Commun. 4, 2061 (2013).ADSGoogle Scholar
  77. 77.
    F. M. Smits, Bell Syst. Technical J. 37, 711 (1958).CrossRefGoogle Scholar
  78. 78.
    B. B. Xu, H. Xia, L. G. Niu, Y. L. Zhang, K. Sun, Q. D. Chen, Y. Xu, Z. Q. Lv, Z. H. Li, H. Misawa, and H. B. Sun, Small 6, 1762 (2010).CrossRefGoogle Scholar
  79. 79.
    B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, Lab Chip 13, 1677 (2013).CrossRefGoogle Scholar
  80. 80.
    H. Wang, S. Liu, Y. L. Zhang, J. N. Wang, L. Wang, H. Xia, Q. D. Chen, H. Ding, and H. B. Sun, Sci. Tech. Adv. Mater. 16, 024805 (2015).CrossRefGoogle Scholar
  81. 81.
    K. Vora, S. Y. Kang, and E. Mazur, JoVE 69, UNSP e4399 (2012).Google Scholar
  82. 82.
    K. Vora, S. Y. Kang, S. Shukla, and E. Mazur, Appl. Phys. Lett. 100, 063120 (2012).ADSCrossRefGoogle Scholar
  83. 83.
    R. Ameloot, M. B. J. Roeffaers, G. De Cremer, F. Vermoortele, J. Hofkens, B. F. Sels, and D. E. De Vos, Adv. Mater. 23, 1788 (2011).CrossRefGoogle Scholar
  84. 84.
    D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).ADSCrossRefGoogle Scholar
  85. 85.
    N. Engheta, and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (John Wiley & Sons, Hoboken, 2006).CrossRefGoogle Scholar
  86. 86.
    S. Zouhdi, S. Ari, and P. Alexey, Metamaterials and Plasmonics: Fundamentals, Modelling, Applications (Springer Science & Business Media, Berlin, Heidelberg, Dordrecht, and New York, 2008).Google Scholar
  87. 87.
    E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, Phys. Rev. Lett. 102, 113902 (2009).ADSCrossRefGoogle Scholar
  88. 88.
    F. Capolino, Theory and Phenomena of Metamaterials (CRC Press, New York, 2009).CrossRefGoogle Scholar
  89. 89.
    A. Vallecchi, S. Campione, and F. Capolino, J. Nanophoton 4, 041577 (2010).ADSCrossRefGoogle Scholar
  90. 90.
    R. Marques, F. Mesa, J. Martel, and F. Medina, IEEE Trans. Antennas Propagat. 51, 2572 (2003).ADSCrossRefGoogle Scholar
  91. 91.
    R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, Phys. Rev. E 76, 026606 (2007).ADSCrossRefGoogle Scholar
  92. 92.
    C. Caloz, and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (John Wiley & Sons, Hoboken, 2005).CrossRefGoogle Scholar
  93. 93.
    A. K. Iyer, P. C. Kremer, and G. V. Eleftheriades, Opt. Express 11, 696 (2003).ADSCrossRefGoogle Scholar
  94. 94.
    V. M. Shalaev, Nat. Photon. 1, 41 (2007).ADSCrossRefGoogle Scholar
  95. 95.
    T. M. Grzegorczyk, and J. A. Kong, J. Electromag. Waves Appl. 20, 2053 (2006).CrossRefGoogle Scholar
  96. 96.
    W. Xu, L. W. Li, H. Y. Yao, T. S. Yeo, and Q. Wu, J. Electromag. Waves Appl. 20, 13 (2006).CrossRefGoogle Scholar
  97. 97.
    S. A. Maier, Opt. Express 14, 1957 (2006).ADSCrossRefGoogle Scholar
  98. 98.
    M. Moskovits, J. Raman Spectrosc. 36, 485 (2005).ADSCrossRefGoogle Scholar
  99. 99.
    C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, Opt. Express 17, 21581 (2009).ADSCrossRefGoogle Scholar
  100. 100.
    I. Izquierdo-Lorenzo, S. Jradi, and P. M. Adam, RSC Adv. 4, 4128 (2014).CrossRefGoogle Scholar
  101. 101.
    S. J. Lee, B. D. Piorek, C. D. Meinhart, and M. Moskovits, Nano Lett. 10, 1329 (2010).ADSCrossRefGoogle Scholar
  102. 102.
    B. B. Xu, Z. C. Ma, L. Wang, R. Zhang, L. G. Niu, Z. Yang, Y. L. Zhang, W. H. Zheng, B. Zhao, Y. Xu, Q. D. Chen, H. Xia, and H. B. Sun, Lab Chip 11, 3347 (2011).CrossRefGoogle Scholar
  103. 103.
    B. B. Xu, R. Zhang, X. Q. Liu, H. Wang, Y. L. Zhang, H. B. Jiang, L. Wang, Z. C. Ma, J. F. Ku, F. S. Xiao, and H. B. Sun, Chem. Commun. 48, 1680 (2012).CrossRefGoogle Scholar
  104. 104.
    J. G. Ng, D. E. G. Watson, J. Sigwarth, A. McCarthy, H. Suyal, D. P. Hand, and M. P. Y. Desmulliez, An Additive Method for Photopatterning of Metals on Flexible Substrates, in Proceedings of the 36th International MATADOR Conference (Springer, London, 2010), pp. 389–392.CrossRefGoogle Scholar
  105. 105.
    J. A. Huang, Y. L. Zhang, H. Ding, and H. B. Sun, Adv. Opt. Mater. 3, 618 (2015).CrossRefGoogle Scholar
  106. 106.
    H. Lin, B. Jia, and M. Gu, Opt. Lett. 36, 406 (2011).ADSCrossRefGoogle Scholar
  107. 107.
    H. Lin, and M. Gu, Appl. Phys. Lett. 102, 084103 (2013).ADSCrossRefGoogle Scholar
  108. 108.
    F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, and S. Kawata, Opt. Express 14, 800 (2006).ADSCrossRefGoogle Scholar
  109. 109.
    E. T. Castellana, S. Kataoka, F. Albertorio, and P. S. Cremer, Anal. Chem. 78, 107 (2006).CrossRefGoogle Scholar
  110. 110.
    S. Maruo, and T. Saeki, Opt. Express 16, 1174 (2008).ADSCrossRefGoogle Scholar
  111. 111.
    E. P. Furlani, H. S. Jee, H. S. Oh, A. Baev, and P. N. Prasad, Adv. OptoElectron. 2012, 1 (2012).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Centre for Micro-Photonics, Faculty of Science, Engineering and TechnologySwinburne University of TechnologyHawthornAustralia

Personalised recommendations