Skip to main content
Log in

Joint product numerical range and geometry of reduced density matrices

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The reduced density matrices of a many-body quantum system form a convex set, whose three-dimensional projection Θ is convex in R3. The boundary ∂Θ of Θ may exhibit nontrivial geometry, in particular ruled surfaces. Two physical mechanisms are known for the origins of ruled surfaces: symmetry breaking and gapless. In this work, we study the emergence of ruled surfaces for systems with local Hamiltonians in infinite spatial dimension, where the reduced density matrices are known to be separable as a consequence of the quantum de Finetti’s theorem. This allows us to identify the reduced density matrix geometry with joint product numerical range Π of the Hamiltonian interaction terms. We focus on the case where the interaction terms have certain structures, such that a ruled surface emerges naturally when taking a convex hull of Π. We show that, a ruled surface on ∂Θ sitting in Π has a gapless origin, otherwise it has a symmetry breaking origin. As an example, we demonstrate that a famous ruled surface, known as the oloid, is a possible shape of Θ, with two boundary pieces of symmetry breaking origin separated by two gapless lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963).

    Article  ADS  Google Scholar 

  2. R. M. Erdahl, J. Math. Phys. 13, 1608 (1972).

    Article  ADS  Google Scholar 

  3. A. A. Klyachko, J. Phys. Conf. Ser. 36, 72 (2006)

    Article  ADS  Google Scholar 

  4. R. Erdahl, and B. Jin, Many-Electron Densities and Reduced Density Matrices, Mathematical and Computational Chemistry, edited by J. Cioslowski (Springer US, New York, 2000), pp. 57–84.

    Book  Google Scholar 

  5. C. A. Schwerdtfeger, and D. A. Mazziotti, J. Chem. Phys. 130, 224102 (2009).

    Article  ADS  Google Scholar 

  6. Y.-K. Liu, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, Lecture Notes in Computer Science, 4110, edited by J. Diaz, K. Jansen, J. D. Rolim, and U. Zwick (Springer, Berlin Heidelberg, 2006), pp. 438–449.

  7. Y. K. Liu, M. Christandl, and F. Verstraete, Phys. Rev. Lett. 98, 110503 (2007).

    Article  ADS  Google Scholar 

  8. T. C. Wei, M. Mosca, and A. Nayak, Phys. Rev. Lett. 104, 040501 (2010).

    Article  ADS  Google Scholar 

  9. F. Verstraete, and J. I. Cirac, Phys. Rev. B 73, 094423 (2006).

    Article  ADS  Google Scholar 

  10. G. Gidofalvi, and D. A. Mazziotti, Phys. Rev. A 74, 012501 (2006).

    Article  ADS  Google Scholar 

  11. J. Chen, Z. Ji, C. K. Li, Y. T. Poon, Y. Shen, N. Yu, B. Zeng, and D. Zhou, New J. Phys. 17, 083019 (2015).

    Article  ADS  Google Scholar 

  12. V. Zauner, L. Vanderstraeten, D. Draxler, Y. Lee, and F. Verstraete, arXiv: 1412.7642.

  13. J. Y. Chen, Z. Ji, Z. X. Liu, Y. Shen, and B. Zeng, Phys. Rev. A 93, 012309 (2016).

    Article  ADS  Google Scholar 

  14. J.-Y. Chen, Z. Ji, Z.-X. Liu, X. Qi, N. Yu, B. Zeng, D. Zhou, arXiv: 1605.06357.

  15. J. W. Gibbs, Trans. Conn. Acad. 2, 309 (1873).

    Google Scholar 

  16. J. W. Gibbs, Trans. Conn. Acad. 2, 382 (1873).

    Google Scholar 

  17. J. W. Gibbs, Trans. Conn. Acad. 3, 108 (1875).

    Google Scholar 

  18. R. B. Israel, Convexity in the Theory of Lattice Gases (Princeton University Press, Princeton, 1979).

    MATH  Google Scholar 

  19. E. Stormer, J. Funct. Anal. 3, 48 (1969).

    Article  MathSciNet  Google Scholar 

  20. R. L. Hudson, and G. R. Moody, Prob. Theory Rel. Fields 33, 343 (1976).

    MathSciNet  Google Scholar 

  21. M. Lewin, P. T. Nam, and N. Rougerie, Adv. Math. 254, 570 (2014).

    Article  MathSciNet  Google Scholar 

  22. Z. Puchala, P. Gawron, J. A. Miszczak, Skowronek, M. D. Choi, and K. Życzkowski, Linear Algebra its Appl. 434, 327 (2011).

    Article  Google Scholar 

  23. G. Dirr, U. Helmke, M. Kleinsteuber, and T. Schulte-Herbrüggen, Linear Multil. Algebra 56, 27 (2008).

    Article  Google Scholar 

  24. R. Duan, Y. Feng, and M. Ying, Phys. Rev. Lett. 100, 020503 (2008).

    Article  ADS  Google Scholar 

  25. T. Schulte-Herbrüggen, G. Dirr, U. Helmke, and S. J. Glaser, Linear Multil. Algebra 56, 3 (2008).

    Article  Google Scholar 

  26. T. Schulte-Herbrüggen, S. J. Glaser, G. Dirr, and U. Helmke, Rev. Math. Phys. 22, 597 (2010).

    Article  MathSciNet  Google Scholar 

  27. P. Gawron, Z. Puchala, J. A. Miszczak, Skowronek, and K. Życzkowski, J. Math. Phys. 51, 102204 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  28. B. Zeng, X. Chen, D.-L. Zhou, and X.-G. Wen, arXiv: 1508.02595.

  29. Y.-H. Au-Yeung, and Y.-T. Poon, SEA Bull. Math. 3, 85 (1979).

    MathSciNet  Google Scholar 

  30. Z. Puchala, P. Gawron, J. A. Miszczak, Skowronek, M. D. Choi, and K. Życzkowski, Linear Algebra Appl. 434, 327 (2011).

    Article  MathSciNet  Google Scholar 

  31. J. Chen, Z. Ji, B. Zeng, and D. L. Zhou, Phys. Rev. A 86, 022339 (2012).

    Article  ADS  Google Scholar 

  32. P. Binding, and C. K. Li, Linear Algebra Appl. 151, 157 (1991).

    Article  MathSciNet  Google Scholar 

  33. H. Dirnböck and H. Stachel, J. Grom. Graph. 1, 105 (1997).

    Google Scholar 

  34. K. Szymański, S. Weis, and K. Życzkowski, arXiv: 1603.06569.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Guo or Bei Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Guo, C., Ji, Z. et al. Joint product numerical range and geometry of reduced density matrices. Sci. China Phys. Mech. Astron. 60, 020312 (2017). https://doi.org/10.1007/s11433-016-0404-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-016-0404-5

Keywords

Navigation