Technology for the next gravitational wave detectors

Abstract

This paper reviews some of the key enabling technologies for advanced and future laser interferometer gravitational wave detectors, which must combine test masses with the lowest possible optical and acoustic losses, with high stability lasers and various techniques for suppressing noise. Sect. 1 of this paper presents a review of the acoustic properties of test masses. Sect. 2 reviews the technology of the amorphous dielectric coatings which are currently universally used for the mirrors in advanced laser interferometers, but for which lower acoustic loss would be very advantageous. In sect. 3 a new generation of crystalline optical coatings that offer a substantial reduction in thermal noise is reviewed. The optical properties of test masses are reviewed in sect. 4, with special focus on the properties of silicon, an important candidate material for future detectors. Sect. 5 of this paper presents the very low noise, high stability laser technology that underpins all advanced and next generation laser interferometers.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Nawrodt R, Rowan S, Hough J, et al. Challenges in thermal noise for 3rd generation of gravitational wave detectors. Gen Relativ Gravit, 2011, 43: 593–622

    ADS  MATH  Article  Google Scholar 

  2. 2

    Cagnoli G, Hough J, DeBra D, et al. Damping dilution factor for a pendulum in an interferometric gravitational waves detector. Phys Lett A, 2000, 272: 39–45

    ADS  Article  Google Scholar 

  3. 3

    Corbitt T, Wipf C, Bodiya T, et al. Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK. Phys Rev Lett, 2007, 99: 160801

    ADS  Article  Google Scholar 

  4. 4

    Braginsky V B, Mitrofanov V P, Panov V I. Systems with Small Dissipation. Chicago: Chicago University Press, 1985

    Google Scholar 

  5. 5

    Zener C M. Elasticity and Anelasticity of Metals. Chicago: Chicago University Press, 1948

    Google Scholar 

  6. 6

    Lifshitz R, Roukes M L. Thermoelastic damping in micro- and nanomechanical systems. Phys Rev B, 2000, 61: 5600–5609

    ADS  Article  Google Scholar 

  7. 7

    Li P, Fang Y, Hu R. Thermoelastic damping in rectangular and circular microplate resonators. J Sound Vib, 2012, 331: 721–733

    ADS  Article  Google Scholar 

  8. 8

    Dmitriev A V, Gritsenko D S, Mitrofanov V P. Non-axisymmetric flexural vibrations of free-edge circular silicon wafers. Phys Lett A, 2014, 378: 673–676

    ADS  Article  Google Scholar 

  9. 9

    Braginsky V B, Gorodetsky M L, Vyatchanin S P. Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae. Phys Lett A, 1999, 264: 1–10

    ADS  Article  Google Scholar 

  10. 10

    Nowick A S, Berry B S. Anelastic Relaxation in Crystalline Solids. New York: Academic Press, 1972

  11. 11

    Kunal K, Aluru N R. Akhiezer damping in nanostructures. Phys Rev B, 2011, 84: 245450

    ADS  Article  Google Scholar 

  12. 12

    Lindenfeld Z, Lifshitz R. Damping of mechanical vibrations by free electrons in metallic nanoresonators. Phys Rev B, 2013, 87: 085448

    ADS  Article  Google Scholar 

  13. 13

    Haucke H, Liu X, Vignola J F, et al. Effects of annealing and temperature on acoustic dissipation in a micromechanical silicon oscillator. Appl Phys Lett, 2005, 86: 181903

    ADS  Article  Google Scholar 

  14. 14

    Blom F R, Bouwstra S, Elwenspoek M, et al. Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry. J Vac Sci Technol B, 1992, 10: 19–26

  15. 15

    Bao M, Yang H. Squeeze film air damping in MEMS. Sens Actuators A, 2007, 136: 3–27

    Article  Google Scholar 

  16. 16

    Frangia A, Cremonesia M, Jaakkolab A, et al. Analysis of anchor and interface losses in piezoelectric MEMS resonators. Sens Actuators A, 2013, 190: 127–135

    Article  Google Scholar 

  17. 17

    Schnabel R, Britzger M, Brueckner F, et al. Building blocks for future detectors: Silicon test masses and 1550 nm laser light. J Phys-Conf Ser, 2010, 228: 012029

    ADS  Article  Google Scholar 

  18. 18

    Lunin B S. Physical and Chemical Bases for the Development of Hemispherical Resonators for Solid-State Giroscopes. Moscow: Moscow Aviation Institute, 2005

    Google Scholar 

  19. 19

    Penn S D, Ageev A, Busby D, et al. Frequency and surface dependence of the mechanical loss in fused silica. Phys Lett A, 2006, 352: 3–6

    ADS  Article  Google Scholar 

  20. 20

    Heptonstall A, Barton M A, Bell A, et al. Invited Article: CO2 laser production of fused silica fibers for use in interferometric gravitational wave detector mirror suspensions. Rev Sci Instrum, 2011, 82(1): 011301

    ADS  Article  Google Scholar 

  21. 21

    Braginsky V B, Mitrofanov V P, Tokmakov K V. Energy dissipation in the test mass suspension of a gravitational wave antenna. Phys Lett A, 1996, 218: 164–166

    ADS  Article  Google Scholar 

  22. 22

    Hirose E, Bajuk D, Billingsley G, et al. Sapphire mirror for the KAGRA gravitational wave detector. Phys Rev D, 2014, 89: 062003

    ADS  Article  Google Scholar 

  23. 23

    McGuigan D F, Lam C C, Gram R Q, et al. Measurements of the mechanical Q of single-crystal silicon at low temperatures. J Low Temp Phys, 1978, 30: 621–629

  24. 24

    Mitrofanov V P. Temperature dependent dissipation in silicon mechanical resonators. Document LIGO-T1200178-v3, 2012, https://dcc.ligo.org/LIGO-T1200178/public

    Google Scholar 

  25. 25

    Reid S, Cagnoli G, Crooks D R M, et al. Mechanical dissipation in silicon flexures. Phys Lett A, 2006, 351: 205–211

    ADS  Article  Google Scholar 

  26. 26

    Nawrodt R, Schwarz C, Kroker S, et al. Investigation of mechanical losses of thin silicon flexures at low temperatures. Class Quantum Grav, 2013, 30: 115008

    ADS  Article  Google Scholar 

  27. 27

    Prokhorov L G, Mitrofanov V P. Mechanical losses of oscillators fabricated in silicon wafers. Class Quantum Grav, 2015, 32: 195002

    ADS  Article  Google Scholar 

  28. 28

    Macleod H A. Thin-Film Optical Filters. Boca Raton, FL: CRC Press, 2010. 165

    Google Scholar 

  29. 29

    LIGO Scientific Collaboration. Instrument science white paper. 2015, LIGO-T1400316-v4

    Google Scholar 

  30. 30

    Callen H B, Welton T A. Irreversibility and generalized noise. Phys Rev, 1951, 83: 34–40

    ADS  MathSciNet  MATH  Article  Google Scholar 

  31. 31

    Harry G M, Gretarsson A M, Saulson P R, et al. Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings. Class Quantum Grav, 2002, 19: 897–917

    ADS  MATH  Article  Google Scholar 

  32. 32

    Harry G, Bodiya T P, DeSalvo R. Optical Coatings and Thermal Noise in Precision Measurement. Cambridge, New York: Cambridge University Press, 2012. chap 3: 24–35

    ADS  Google Scholar 

  33. 33

    Gorodetsky M L. Thermal noises and noise compensation in highreflection multilayer coating. Phys Lett A, 2008, 372: 6813–6822

    ADS  Article  Google Scholar 

  34. 34

    Harry G, Bodiya T P, DeSalvo R. Optical Coatings and Thermal Noise in Precision Measurement. Cambridge, New York: Cambridge University Press, 2012. chap 9: 154–171

    ADS  Google Scholar 

  35. 35

    Aso Y, Michimura Y, Somiya K, et al. Interferometer design of the KAGRA gravitational wave detector. Phys Rev D, 2013, 88: 043007

    ADS  Article  Google Scholar 

  36. 36

    Abernathy M, Acernese F, Ajith P, et al. Einstein gravitational wave telescope conceptual design study. European Commission FP7, Grant Agreement 211743, ET-0106C-10

  37. 37

    Stolz C J, Taylor J R. Damage threshold study of ion beam sputtered coatings for a visible high-repetition laser at LLNL. SPIE 1848 Laser- Induced Damage in Optical Materials, 1992. 182–191

    Google Scholar 

  38. 38

    Harry G, Bodiya T P, DeSalvo R. Optical Coatings and Thermal Noise in Precision Measurement. Cambridge, New York: Cambridge University Press, 2012

    Google Scholar 

  39. 39

    Gibson U J. Ion-beam processing of optical thin films. Phys Thin Films, 1987, 13: 109–150

    MathSciNet  Article  Google Scholar 

  40. 40

    Martin I W, Bassiri R, Nawrodt R, et al. Effect of heat treatment on mechanical dissipation in Ta2O5 coatings. Class Quantum Grav, 2010, 27: 225020

    ADS  Article  Google Scholar 

  41. 41

    Penn S, Podkaminer J, Luongo C, et al. Exploring coating thermal noise via loss in fused silica coatings. LIGO-G0900600

  42. 42

    Abernathy M R, Reid S, Chalkley E, et al. Cryogenic mechanical loss measurements of heat-treated hafnium dioxide. Class Quantum Grav, 2011, 28: 195017

    ADS  Article  Google Scholar 

  43. 43

    Martin N, Rousselot C, Rondot D, et al. Microstructure modification of amorphous titanium oxide thin films during annealing treatment. Thin Solid Films, 1997, 300: 113–121

    ADS  Article  Google Scholar 

  44. 44

    Chao S, Lin Y F, Lin J F, et al. Scattering loss of an optimum pair high reflectance dielectric mirror. Appl Opt, 1990, 29: 1960–1963

    ADS  Article  Google Scholar 

  45. 45

    Khalili F Y. Reducing the mirrors coating noise in laser gravitationalwave antennae by means of double mirrors. Phys Lett A, 2005, 334: 67–72

    ADS  Article  Google Scholar 

  46. 46

    Steinlechner J, Martin I W, Hough J, et al. Thermal noise reduction and absorption optimization via multimaterial coatings. Phys Rev D, 2015, 91: 042001

    ADS  Article  Google Scholar 

  47. 47

    Harry G, Bodiya T P, DeSalvo R. Optical Coatings and Thermal Noise in Precision Measurement. Cambridge, New York: Cambridge University Press, 2012. Chapter 12: 207–233

    ADS  Google Scholar 

  48. 48

    Pinto I M, Principe M, DeSalvo R. Review of optimized coatings and plans for nanometer layer sandwich coatings. Workshop on Coating Modeling, Caltech, March, 2010, LIGO-G1000380

    Google Scholar 

  49. 49

    Pan H W, Wang S J, Kuo L C, et al. Thickness-dependent crystallization on thermal anneal for titania/silica nm-layer composites deposited by ion beam sputter method. Opt Express, 2014, 22: 29847–29854

    ADS  Article  Google Scholar 

  50. 50

    Chao S, Kuo L C, Pan H W. Mechanical loss reduction for nmlayered SiO2/TiO2 composites by thermal annealing. LVC meeting, Budapest Hungary, Sep. 2015, LIGO-G1501024

  51. 51

    Harry G, Bodiya T P, DeSalvo R. Optical Coatings and Thermal Noise in Precision Measurement. Cambridge, New York: Cambridge University Press, 2012. Chapter 2: 7–23

    ADS  Google Scholar 

  52. 52

    Wei D T, Louderback AW.Method for fabricating multi-layer optical films. United States Patent, US4142958 A, 1979-03-06

  53. 53

    Wei D T. Ion beam interference coating for ultralow optical loss. Appl Opt, 1989, 28: 2813–2816

    ADS  Article  Google Scholar 

  54. 54

    Maissel L I, Glang R. Handbook of Thin Film Technology. New York: McGraw-Hill Book Company, 1970. 31–338

  55. 55

    Wehner G K, Rosenberg D. Angular distribution of sputtered material. J Appl Phys, 1960, 31: 177

  56. 56

    Pinard L. advanced LIGO test masses coatings a LIGO and CHALLENGING story final results. LVC meeting, Pasadena, CA, USA, March 2015, LIGO-G1500296-v2

    Google Scholar 

  57. 57

    Pinard L. The VIRGO large mirrors: A challenge for low loss coatings—Amaldi presentation, Lyon, France, 2003, LIGOG030490- x0

    Google Scholar 

  58. 58

    Beauville F, Buskulic D, Flaminio R, et al. Low loss coatings for the VIRGO large mirrors. Proc SPIE, 2004, 483–492, in2p3- 00024327

    Google Scholar 

  59. 59

    Netterfield R P, Gross M, Baynes F N, et al. Low mechanical loss coatings for LIGO optics: Progress report. Proc SPIE, 2005, 5870: 58700H

    Google Scholar 

  60. 60

    Stoffel A, Kovacs A, Kronast W, et al. LPCVD against PECVD for micromechanical applications, J Micromech Microeng, 1996, 6(1): 1–13

  61. 61

    Nguyen S V, Fridmann S. Plasma deposition and characterization of thin silicon-rich silicon nitride films. J Electrochem Soc, 1987, 134: 2324–2329

    Article  Google Scholar 

  62. 62

    Kalb A, Mildebrath M, Sanders V. Neutral ion beam deposition of high reflectance coatings for use in ring laser gyroscopes. J Vac Sci Technol A, 1986 4: 436–437

    ADS  Article  Google Scholar 

  63. 63

    Franc J, Morgado N, Flaminio R, et al. Mirror thermal noise in laser interferometer gravitational wave detectors operating at room and cryogenic temperature. arXiv:0912.0107vl

  64. 64

    Martin I. Studies of Materials for Use in Future Interferometric Gravitational Wave Detectors. Dissertation for the Doctoral Degree. Glasgow: The university of Glasgow, 2009

    Google Scholar 

  65. 65

    Penn S, Podkaminer J, Luo J, et al. Recent measurements of mechanical loss for aLIGO coating research. LSC meeting, Embassy Suites, March 2010, LIGO-G1000356

    Google Scholar 

  66. 66

    Penn S, Sneddon P H, Armandula H, et al. Mechanical loss in tantala/ silica dielectric mirror coatings. Class Quantum Grav, 2003, 20: 2917–2928

    ADS  MATH  Article  Google Scholar 

  67. 67

    Martin I W, Nawrodt R, Craig K, et al. Low temperature mechanical dissipation of an ion-beam sputtered silica film. Class Quantum Grav, 2014, 31: 035019

    ADS  Article  Google Scholar 

  68. 68

    Gilroy K S, Phillips W A. An asymmetric double-well potential model for structural relaxation processes in amorphous materials. Philos Mag B, 1981, 43: 735–746

    ADS  Article  Google Scholar 

  69. 69

    Topp K A, Cahill D G. Elastic properties of several amorphous solids and disordered crystals below 100 K. Z Phys B, 1996, 101: 235–245

    ADS  Article  Google Scholar 

  70. 70

    Martin I, Armandula H, Comtet C, et al. Measurements of a lowtemperature mechanical dissipation peak in a single layer of Ta2O5 doped with TiO2. Class Quantum Grav, 2008, 25: 055005

    ADS  Article  Google Scholar 

  71. 71

    Murray P G, Martin I W, Abernathy M R, et al. Ion-beam sputtered amorphous silicon films for cryogenic precision measurement systems. 2015, LIGO-P1500080

    Google Scholar 

  72. 72

    Phillips W A. Amorphous Solids Low Temperature Properties. Berlin: Springer, 1981

    Google Scholar 

  73. 73

    Anderson P W, Halperin B I, Varma C M. Anomalous lowtemperature thermal properties of glasses and spin glasses. Philos Mag, 1972, 25: 1–9

    ADS  MATH  Article  Google Scholar 

  74. 74

    Liu X, White J B E, Pohl R O. Amorphous solid without low energy excitations. Phys Rev Lett, 1997, 78: 4418–4421

    ADS  Article  Google Scholar 

  75. 75

    Liu X, Queen D R, Metcalf T H, et al. Hydrogen-free amorphous silicon with no tunneling states. Phys Rev Lett, 2014, 113: 025503

    ADS  Article  Google Scholar 

  76. 76

    Liu X, Queen D R, Metcalf T H, et al. Amorphous dielectric thin films with extremely low mechanical loss. Arch Metall Mater, 2015, 60: 359–363

    Google Scholar 

  77. 77

    Pinto I M, Principe M, DeSalvo R, et al. Nm-layered amorphous glassy oxide composites for 3rd generation interferometric gravitational wave detectors. 6th ET symposium, Lyon France, Nov. 2014, LIGO-G1401358

    Google Scholar 

  78. 78

    Harry GM, Abernathy MR, Becerra-Toledo A E, et al. Titania-doped tantala/silica coatings for gravitational-wave detection. Class Quantum Grav, 2007, 24: 405–415

    ADS  Article  Google Scholar 

  79. 79

    Martin I W, Chalkley E, Nawrodt R, et al. Comparison of the temperature dependence of the mechanical dissipation in thin films of Ta2O5 and Ta2O5 doped with TiO2. Class Quantum Grav, 2009, 26: 155012

    ADS  Article  Google Scholar 

  80. 80

    Martin I, Craig K, Murray P, et al. Mechanical loss of crystalline and amorphous coatings. GWADW, Takayama, May 2014, http:// www.gravity.ircs.titech.ac.jp/GWADW2014/slide/Iain Martin.pdf

    Google Scholar 

  81. 81

    Chao S, Wang W H, Lee C C. Low-loss dielectric mirror with ionbeam- sputtered TiO2SiO2 mixed films. Appl Opt, 2001, 40: 2177–2182

    ADS  Article  Google Scholar 

  82. 82

    Murray P, Bassiri R, Bell A, et al. Coating mechanical loss investigations. LSC meeting, Nice, France, March 2014, LIGO-G1400275

  83. 83

    Penn S. Mechanical loss in annealed amorphous and AlGaAs coatings. LVC meeting, Nice, France, March 2014, LIGO-G1400257

    Google Scholar 

  84. 84

    Flaminio R, Michel C, Morgado N, et al. A study of coating mechanical and optical losses in view of reducing mirror thermal noise in gravitational wave detectors. Class Quantum Grav, 2010, 27: 084030

    ADS  MathSciNet  Article  Google Scholar 

  85. 85

    DeSalvo R. Status of nano-layered coating developments. LVC meeting, Pasadena, CA, USA, March 2015, LIGO-G1500330

    Google Scholar 

  86. 86

    Netterfield R P, Gross M, Investigation of ion beam sputtered silica titania mixtures for use in GW interferometer optics. Optical Interference Coatings (OIC) Conference, Tucson AZ, USA, 2007, paper Thd2

    Google Scholar 

  87. 87

    Martin I, Steinlechner J, Murray P, et al. Asi coatings optical absorption and mechanical loss. LVC meeting, Pasadena, CA, USA, March 2015, LIGO-G1500385

    Google Scholar 

  88. 88

    Philipp H R. Optical properties of silicon nitride. J Electrochem Soc, 1973, 120: 295–300

    Article  Google Scholar 

  89. 89

    Poenar D P, Wolffenbuttel R F. Optical properties of thin-film silicon compatible materials. Appl Opt, 1997, 36: 5122–5128

    ADS  Article  Google Scholar 

  90. 90

    Chao S, Pan H W, Juang Y H, et al. Mechanical loss of silicon cantilever coated with a high-stress SiNx film. LVC meeting, Stanford, CA, USA, 2014, LIGO-G1400851

  91. 91

    Zwickl B M, Shanks W E, Jayich A M, et al. High quality mechanical and optical properties of commercial silicon nitride membrances. Appl Phys Lett, 2008, 92: 103125

    ADS  Article  Google Scholar 

  92. 92

    Southworth D R, Barton R A, Verbridge S S, et al. Stress and silicon nitride: A crack in the universal dissipation of glasses. Phys Rev Lett, 2009, 102: 225503

    ADS  Article  Google Scholar 

  93. 93

    Wu J, Yu C C. How stress can reduce dissipation in glasses. Phys Rev B, 2011, 84: 174109

    ADS  Article  Google Scholar 

  94. 94

    Chao S, Pan H W, Huang S Y, et al. Room temperature mechanical loss of high stress silicon nitride film measured by cantilever ringdown method on double-side coated cantilever. LVC meeting, Budapest, Hungary, 2015, LIGO-G1501068

  95. 95

    Juang Y H. Stress Effect on Mechanical Loss of the SiNx Film Deposited with PECVD Method on Silicon Cantilever and Setup for the LossMeasurement Improvement. Dissertation for theMaster Degree. Hsinchu: Tsing Hua University, 2014

    Google Scholar 

  96. 96

    Bassiri R, Evans, Borisenko K B, et al. Correlations between the mechanical loss and atomic structure of amorphous TiO2-doped Ta2O5 coatings. Acta Mater, 2013, 61: 1070–1077

    Article  Google Scholar 

  97. 97

    Bassiri R, Abernathy M R, Byer R L, et al. Atomic structure investigations of heat-treated and doped tantala coatings. LVC meeting, Nice, France, March 2014, LIGO-G1400271

    Google Scholar 

  98. 98

    Bassiri R, Liou F, Abernathy M R, et al. Order within disorder: The atomic structure of ion-beam sputtered amorphous tantala (a-Ta2O5). APL Mater, 2015, 3: 036103

    ADS  Article  Google Scholar 

  99. 99

    Bassiri R, Borisenko K B, Cockayne D J, et al. Probing the atomic structure of amorphous Ta2O5 coatings. Appl Phys Lett, 2011, 98: 031904

    ADS  Article  Google Scholar 

  100. 100

    Wu Y N, Li L, Cheng H P. A first-principle study of Ta2O5. 2011, LIGO-G1100362

    Google Scholar 

  101. 101

    Nawrodt R, Zimmer A, Nietzsche S, et al. A new apparatus for mechanical Q-factor measurements between 5 and 300 K. Cryogenics, 2006, 46: 718–723

    ADS  Article  Google Scholar 

  102. 102

    Cesarini E, Lorenzini M, Cagnoli G, et al. A gentle nodal suspension for measurements of the acoustic attenuation in materials. Rev Sci Instrum, 2009, 80: 053904

    ADS  Article  Google Scholar 

  103. 103

    Nicolas D S. A technique for continuous measurement of the quality factor of mechanical oscillators. Rev Sci Instrum, 2015, 86: 053907

    Article  Google Scholar 

  104. 104

    Vander-Hyde D, Amra C, Lequime M, et al. Optical scatter of quantum noise filter cavity optics. Class Quantum Grav, 2015, 32: 135019

    ADS  Article  Google Scholar 

  105. 105

    Alexandrovski A, Fejer M, Markosyan A, et al. Photothermal common path interferometry: New development. Proc SPIE, 7193: 71930D-1

  106. 106

    Schiller S, Lammerzahl C, Muller H, et al. Experimental limits for low-frequency space-time fluctuations from ultrastable optical resonators. Phys Rev D, 2004, 69(2): 027504

    ADS  Article  Google Scholar 

  107. 107

    Ludlow A D, Boyd M M, Ye J, et al. Optical atomic clocks. Rev Mod Phys, 2015, 87(2): 637–701

    ADS  Article  Google Scholar 

  108. 108

    Abbott B P, Abbott R, Adhikari R, et al. LIGO: The laser interferometer gravitational-wave observatory. Rep Prog Phys, 2009, 72(7): 076901

    ADS  Article  Google Scholar 

  109. 109

    Saulson P R. Thermal noise in mechanical experiments. Phys Rev D, 1990, 42(8): 2437–2445

    ADS  Article  Google Scholar 

  110. 110

    Young B C, Cruz F C, Itano W M, et al. Visible lasers with subhertz linewidths. Phys Rev Lett, 1999, 82(19): 3799–3802

    ADS  Article  Google Scholar 

  111. 111

    Ludlow A D, Huang X, Notcutt M, et al. Compact, thermal-noiselimited optical cavity for diode laser stabilization at 1 × 10(-15). Opt Lett, 2007, 32(6): 641–643

    ADS  Article  Google Scholar 

  112. 112

    Millo J, Magalhaes D V, Mandache C, et al. Ultrastable lasers based on vibration insensitive cavities. Phys Rev A, 2009, 79(5): 053829

    ADS  Article  Google Scholar 

  113. 113

    Jiang Y Y, Ludlow A D, Lemke N D, et al. Making optical atomic clocks more stable with 10–16-level laser stabilization. Nat Photonics, 2011, 5(3): 158–161

    ADS  Article  Google Scholar 

  114. 114

    Kessler T, Hagemann C, Grebing C, et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nat Photonics, 2012, 6(10): 687–692

  115. 115

    Nicholson T L, Martin M J, Williams J R, et al. Comparison of two independent Sr optical clocks with 1 × 10-17 stability at 103 s. Phys Rev Lett, 2012, 109(23): 230801

    ADS  Article  Google Scholar 

  116. 116

    Martin M J, Bishof M, Swallows M D, et al. A quantum many-body spin system in an optical lattice clock. Science, 2013, 341(6146): 632–636

  117. 117

    Aasi J, Abbott B P, Abbott R, et al. (LIGO Scientific Collaboration). Advanced LIGO. Class Quantum Grav, 2015, 32(7): 074001

    ADS  Article  Google Scholar 

  118. 118

    Numata K, Kemery A, Camp J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. Phys Rev Lett, 2004, 93(25): 250602

    ADS  Article  Google Scholar 

  119. 119

    Bishof M, Zhang X, Martin MJ, et al. Optical spectrum analyzer with quantum-limited noise floor. Phys Rev Lett, 2013, 111(9): 093604

    ADS  Article  Google Scholar 

  120. 120

    Landau L D, Lifshitz E M. Statistical Physics. New York: Elsevier, 1996

  121. 121

    Aspelmeyer M, Kippenberg T J, Marquardt F. Cavity optomechanics. Rev Mod Phys, 2014, 86(4): 1391–1452

    ADS  Article  Google Scholar 

  122. 122

    Iga K. Surface-emitting laser-its birth and generation of new optoelectronics field. IEEE J Sel Top Quantum Electron, 2000, 6(6): 1201–1215

    Article  Google Scholar 

  123. 123

    Madsen M, Takei K, Kapadia R, et al. Nanoscale semiconductor “X” on substrate “Y” processes, devices, and applications. Adv Mater, 2011, 23(28): 3115–3127

    Article  Google Scholar 

  124. 124

    Cole G D, ZhangW, Martin MJ, et al. Tenfold reduction of Brownian noise in high-reflectivity optical coatings. Nat Photonics, 2013, 7(8): 644–650

    ADS  Article  Google Scholar 

  125. 125

    Cole G D. Cavity optomechanics with low-noise crystalline mirrors. Proc SPIE 8458, Optics & Photonics, Optical Trapping and Optical Micromanipulation IX. San Diego: Proceedings of SPIE, 2012. 845807

    Google Scholar 

  126. 126

    Cole G D, Follman D, Heu P, et al. Crystalline coatings with optical losses below 5 ppm. 8th Symposium on Frequency Standards and Metrology, Potsdam, Germany, 2015

    Google Scholar 

  127. 127

    Rempe G, Thompson R J, Kimble H J, et al. Measurement of ultralow losses in an optical interferometer. Opt Lett, 1992, 17(5): 363–365

    ADS  Article  Google Scholar 

  128. 128

    Crooks D R M, Sneddon P, Cagnoli G, et al. Excess mechanical loss associated with dielectric mirror coatingson test masses in interferometric gravitational wave detectors. Class Quantum Grav, 2002, 19(5): 883–896

    ADS  MATH  Article  Google Scholar 

  129. 129

    Amairi S, Legero T, Kessler T, et al. Reducing the effect of thermal noise in optical cavities. Appl Phys B, 2013, 113(2): 233–242

    ADS  Article  Google Scholar 

  130. 130

    Bondarescu M, Kogan O, Chen Y, et al. Optimal light beams and mirror shapes for future LIGO interferometers. Phys Rev D, 2008, 78(8): 082002

    ADS  Article  Google Scholar 

  131. 131

    Kimble H J, Lev B L, Ye J, et al. Optical interferometers with reduced sensitivity to thermal noise. Phys Rev Lett, 2008, 101(26): 260602

    ADS  Article  Google Scholar 

  132. 132

    Friedrich D, Barr B W, Brueckner F, et al. Waveguide grating mirror in a fully suspended 10 meter Fabry-Perot cavity. Opt Express, 2011, 19(16): 14955–14963

  133. 133

    Kemiktarak U, Metcalfe M, Durand M, et al. Mechanically compliant grating reflectors for optomechanics. Appl Phys Lett, 2012, 100(6): 061124

    ADS  Article  Google Scholar 

  134. 134

    Alnis J, Schliesser A, Wang C Y, et al. Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization. Phys Rev A, 2011, 84(1): 011804

    ADS  Article  Google Scholar 

  135. 135

    Cole G D, Groeblacher S, Gugler K, et al. Monocrystalline AlxGa1-xAs heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime. Appl Phys Lett, 2008, 92(26): 261108

    ADS  Article  Google Scholar 

  136. 136

    Cole G D, Wilson-Rae I, Vanner M R, et al. Megahertz monocrystalline optomechanical resonators with minimal dissipation. In: 23rd IEEE International Conference onMicro ElectroMechanical Systems (MEMS). Hong Kong: Proceedings: IEEE Micro electro mechanical systems, 2010. 847–850

    Google Scholar 

  137. 137

    Vanderziel J P, Ilegems M. Multilayer GaAs-Al0.3Ga0.7As dielectric quarter wave stacks grown by molecular beam epitaxy. Appl Opt, 1975, 14(11): 2627–2630

    ADS  Article  Google Scholar 

  138. 138

    Brodoceanu D, Cole G D, Kiesel N, et al. Femtosecond laser fabrication of high reflectivity micromirrors. Appl Phys Lett, 2010, 97(4): 041104

    ADS  Article  Google Scholar 

  139. 139

    Cole G D, Bai Y, Aspelmeyer M, et al. Free-standing AlxGa1-xAs heterostructures by gas-phase etching of germanium. Appl Phys Lett, 2010, 96(26): 261102

    ADS  Article  Google Scholar 

  140. 140

    Cole G D, Wilson-Rae I, Werbach K, et al. Phonon-tunnelling dissipation in mechanical resonators. Nat Commun, 2011, 2: 231

    ADS  Article  Google Scholar 

  141. 141

    Black A, Hawkins A R, Margalit N M. Wafer fusion: Materials issues and device results. IEEE J Sel Top Quantum Electron, 1997, 3(3): 943–951

    Article  Google Scholar 

  142. 142

    Konagai M, Sugimoto M, Takahashi K, et al. High efficiency GaAs thin film solar cells by peeled film technology. J Crystal Growth, 1978, 45(1): 277–280

  143. 143

    Yablonovitch E, Hwang D M, Gmitter T J, et al. Vanderwaals bonding of GaAs epitaxial liftoff films onto arbitrary substrates. Appl Phys Lett, 1990, 56(24): 2419–2421

    ADS  Article  Google Scholar 

  144. 144

    Evans M, Ballmer S, Fejer M, et al. Thermo-optic noise in coated mirrors for high-precision optical measurements. Phys Rev D, 2008, 78(10): 102003

    ADS  Article  Google Scholar 

  145. 145

    Chalermsongsak T, Hall E D, Cole G D. Coherent cancellation of photothermal noise in GaAs/Al0.92Ga0.08As bragg mirrors. arXiv:1506.07088

  146. 146

    Steinlechner J, Martin I W, Bell A, et al. Mapping the optical absorption of a substrate-transferred crystalline AlGaAs coating at 1.5 mu m. Class Quantum Grav, 2015, 32(10): 105008

    ADS  Article  Google Scholar 

  147. 147

    Schreiber K U, Thirkettle R J, Hurst R B, et al. Sensing earth’s rotation with a helium-neon ring laser operating at 1.15 mu m. Opt Lett, 2015, 40(8): 1705–1708

    ADS  Article  Google Scholar 

  148. 148

    Yamamoto K, Miyoki S, Uchiyama T, et al. Measurement of the mechanical loss of a cooled reflective coating for gravitational wave detection. Phys Rev D, 2006, 74(2): 022002

    ADS  Article  Google Scholar 

  149. 149

    Ting S M, Fitzgerald E A. Metal-organic chemical vapor deposition of single domain GaAs on Ge/GexSi1-x/Si and Ge substrates. J Appl Phys, 2000, 87(5): 2618–2628

    ADS  Article  Google Scholar 

  150. 150

    Aasi J, Abbott B P, Abbott, R, et al. Advanced LIGO. Class Quantum Grav, 2015, 32(7): 074001

    ADS  Article  Google Scholar 

  151. 151

    Acernese F, Agathos M, Agatsuma K, et al. Advanced Virgo: A second-generation interferometric gravitational wave detector. Class Quantum Grav, 2015, 32(2): 024001

    ADS  Article  Google Scholar 

  152. 152

    Somiya K. Detector configuration of KAGRA—The Japanese cryogenic gravitational-wave detector. Class Quantum Grav, 2012, 29(12): 124007

    ADS  Article  Google Scholar 

  153. 153

    Degallaix J, Zhao C, Ju L, et al. Simulation of bulk-absorption thermal lensing in transmissive optics of gravitational waves detectors. Appl Phys B, 2003, 77(4): 409–414

    ADS  Article  Google Scholar 

  154. 154

    Lawrence R, Ottaway D, Zucker M, et al. Active correction of thermal lensing through external radiative thermal actuation. Opt lett, 2004, 29(22): 2635–2637

    ADS  Article  Google Scholar 

  155. 155

    Tomaru T, Suzuki T, Miyoki S, et al. Thermal lensing in cryogenic sapphire substrates. Class Quantum Grav, 2002, 19(7): 2045

    ADS  Article  Google Scholar 

  156. 156

    Komma J, Schwarz C, Hofmann G, et al. Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Appl Phys Lett, 2012, 101(4): 041905

    ADS  Article  Google Scholar 

  157. 157

    Tomaru T, Suzuki T, Uchiyama T, et al. Maximum heat transfer along a sapphire suspension fiber for a cryogenic interferometric gravitational wave detector. Phys Lett A, 2002, 301(3): 215–219

    ADS  Article  Google Scholar 

  158. 158

    Barriga P, Bhawal B, Ju L, et al. Numerical calculations of diffraction losses in advanced interferometric gravitational wave detectors. J Opt Soc Am A, 2007, 24(6): 1731–1741

  159. 159

    Buonanno A, Chen Y. Quantum noise in second generation, signalrecycled laser interferometric gravitational-wave detectors. Phys Rev D, 2001, 64(4): 042006

    ADS  Article  Google Scholar 

  160. 160

    Lorenzini M. (Virgo Collaboration). The monolithic suspension for the virgo interferometer. Class Quantum Grav, 2010, 27(8): 084021

    Article  Google Scholar 

  161. 161

    Fritschel P. Second generation instruments for the laser interferometer gravitational wave observatory (LIGO). In: Astronomical Telescopes and Instrumentation, International Society for Optics and Photonics, 2003. 282–291

    Google Scholar 

  162. 162

    Benabid F, Notcutt M, Loriette, V, et al. X-ray induced absorption of high-purity sapphire and investigation of the origin of the residual absorption at 1064 nm. J Phys D-Appl Phys, 2000, 33(6): 589

    ADS  Article  Google Scholar 

  163. 163

    Tomaru T, Uchiyama T, Tatsumi D, et al. Cryogenic measurement of the optical absorption coefficient in sapphire crystals at 1.064 mu m for the large-scale cryogenic gravitational wave telescope. Phys Lett A, 2001, 283(1): 80–84

    ADS  Article  Google Scholar 

  164. 164

    Hirose E, Sekiguchi T, Kumar R, et al. Update on the development of cryogenic sapphire mirrors and their seismic attenuation system for KAGRA. Class Quantum Grav, 2014, 31(22): 224004–224018

    ADS  Article  Google Scholar 

  165. 165

    Punturo M, Abernathy M, Acernese F, et al. The Einstein Telescope: A third-generation gravitational wave observatory. Class Quantum Grav, 2010, 27(19): 194002

    ADS  Article  Google Scholar 

  166. 166

    Degallaix J, Flaminio R, Forest D, et al. Bulk optical absorption of high resistivity silicon at 1550 nm. Opt Lett, 2013, 38(12): 2047–2049

    ADS  Article  Google Scholar 

  167. 167

    ET Science Team. Einstein telescope design study, 2009, http://www. et-gw.eu/.EGO

    Google Scholar 

  168. 168

    Smith N, Brooks A, Barsotti L, et al. A cryogenic silicon LIGO upgrade (LIGO-T1400226-v5), 2014, https://dcc.ligo.org/LIGOT1400226

    Google Scholar 

  169. 169

    Freise A, Hild S, Somiya K, et al. Optical detector topology for thirdgeneration gravitational wave observatories. Gen Relat Grav, 2011, 43(2): 537–567

    ADS  Article  Google Scholar 

  170. 170

    Kwee P, Bogan C, Danzmann K, et al. Stabilized high-power laser system for the gravitational wave detector advanced LIGO. Opt Express, 2012, 20(10): 10617–10634

    ADS  Article  Google Scholar 

  171. 171

    Meier T, Willke B, Danzmann K. Continuous-wave single-frequency 532 nm laser source emitting 130 W into the fundamental transversal mode. Opt Lett, 2010, 35(22): 3742–3744

    ADS  Article  Google Scholar 

  172. 172

    Carbone L, Bogan C, Fulda P, et al. Generation of high-purity higherorder Laguerre-Gauss beams at high laser power. Phys Rev Lett, 2013, 110(25): 251101

    ADS  Article  Google Scholar 

  173. 173

    Theeg T, Sayinc H, Neumann J, et al. All-fiber counter-propagation pumped single frequency amplifier stage with 300-W output power. IEEE Photonics Technol Lett, 2012, 24(20): 1864–1867

    ADS  Article  Google Scholar 

  174. 174

    Kane T J, Byer R L. Monolithic, unidirectional single-mode Nd:YAG ring laser. Opt Lett, 1985, 10(2): 65–67

    ADS  Article  Google Scholar 

  175. 175

    Theeg T, Sayinc H, Neumann J, et al. Pump and signal combiner for bi-directional pumping of all-fiber lasers and amplifiers. Opt Express, 2012, 20(27): 28125–28141

    ADS  Article  Google Scholar 

  176. 176

    Steinke M, Croteau A, Zheng H, et al. Co-seeded Er3+:Yb3+ single frequency fiber amplifier with 60 W output power and over 90% TEM00 content. Opt Express, 2014, 22(14): 16722–16730

    ADS  Article  Google Scholar 

  177. 177

    Kuhn V, Kracht D, Neumann J, et al. 67 W of output power from an Yb-free Er-doped fiber amplifier cladding pumped at 976 nm. IEEE Photonics Technol Lett, 2011, 23(7): 432–434

  178. 178

    Kuhn V, Unger S, Jetschke S, et al. Experimental comparison of fundamental mode content in Er:Yb-codoped LMA fibers with multifilament-and pedestal-design cores. J Lightwave Technol, 2010, 28(22): 3212–3219

  179. 179

    Kuhn V, Kracht D, Neumann J, et al. Er-doped photonic crystal fiber amplifier with 70 W of output power. Opt Lett, 2011, 36(16): 3030–3032

    ADS  Article  Google Scholar 

  180. 180

    Tunnermann H, Pold J H, Neumann J, et al. Beam quality and noise properties of coherently combined ytterbium doped single frequency fiber amplifiers. Opt Express, 2011, 19(20): 19600–19606

    ADS  Article  Google Scholar 

  181. 181

    Innolight. Mephisto Product Line, (now Coherent, http://www. coherent.com/), 2009

    Google Scholar 

  182. 182

    Frede M, Schulz B, Wilhelm R, et al. Fundamental mode, singlefrequency laser amplifier for gravitational wave detectors. Opt Express, 2007, 15(2): 459–465

    ADS  Article  Google Scholar 

  183. 183

    Winkelmann L, Puncken O, Kluzik R, et al. Injection-locked singlefrequency laser with an output power of 220 W. Appl Phys B-Lasers Opt, 2011, 102(3): 529–538

    ADS  Article  Google Scholar 

  184. 184

    Drever R W P, Hall J L, Kowalski F V, et al. Laser phase and frequency stabilization using an optical resonator. Appl Phys B-Lasers Opt, 1983, 31(2): 97–105

    ADS  Article  Google Scholar 

  185. 185

    Black E D. An introduction to Pound-Drever-Hall laser frequency stabilization. Am J Phys, 2001, 69: 79–87

    ADS  Article  Google Scholar 

  186. 186

    Kwee P, Willke B, Danzmann K. Shot-noise-limited laser power stabilization with a high-power photodiode array. Opt Lett, 2009, 34(19): 2912–2914

    ADS  Article  Google Scholar 

  187. 187

    Kwee P, Willke B, Danzmann K. Optical ac coupling to overcome limitations in the detection of optical power fluctuations. Opt Lett, 2008, 33(13): 1509–1511

    ADS  Article  Google Scholar 

  188. 188

    Kwee P, Willke B, Danzmann K. Laser power stabilization using optical ac coupling and its quantum and technical limits. Appl Opt, 2009, 48(28): 5423–5431

    ADS  Article  Google Scholar 

  189. 189

    Kwee P, Willke B, Danzmann K. Laser power noise detection at the quantum-noise limit of 32 A photocurrent. Opt Lett, 2011, 36(18): 3563–3565

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shiuh Chao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mitrofanov, V.P., Chao, S., Pan, H. et al. Technology for the next gravitational wave detectors. Sci. China Phys. Mech. Astron. 58, 120404 (2015). https://doi.org/10.1007/s11433-015-5738-8

Download citation

Keywords

  • gravitational waves
  • advanced techniques
  • thermal noise
  • coating
  • laser