Advertisement

Femtosecond laser 3D fabrication of whispering-gallery-mode microcavities

  • HuaiLiang XuEmail author
  • HongBo SunEmail author
Review Special Topic: Microcavity Photonics

Abstract

Whispering-gallery-mode (WGM) microcavities with high-quality factors and small volumes have attracted intense interests in the past decades because of their potential applications in various research fields such as quantum information, sensing, and optoelectronics. This leads to rapid advance in a variety of processing technologies that can create high-quality WGM micro- cavities. Due to the unique characteristics of femtosecond laser pulses with high peak intensity and ultrashort pulse duration, femtosecond laser shows the ability to carry out ultrahigh precision micromachining of a variety of transparent materials through nonlinear multiphoton absorption and tunneling ionization. This review paper describes the basic principle of femtosecond laser direct writing, and presents an overview of recent progress concerning femtosecond laser three-dimensional (3D) fabrications of optical WGM microcavities, which include the advances in the fabrications of passive and active WGMs microcavities in a variety of materials such as polymer, glass and crystals, as well as in processing the integrated WGM-microcavity device. Lastly, a summary of this dynamic field with a future perspective is given.

Keywords

microcavity fabrication femtosecond laser 

References

  1. 1.
    He L, Özdemir Ş K, Yang L. Whispering gallery microcavity lasers. Laser Photon Rev, 2013; 7: 60–82CrossRefGoogle Scholar
  2. 2.
    Hu Y W, Xiao Y F, Liu Y C, et al. Optomechanical sensing with on-chip microcavities. Front Phys, 2013; 8: 475–490CrossRefGoogle Scholar
  3. 3.
    Shao L, Jiang X, Yu X, et al. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv Mater, 2013; 25: 5616–5620CrossRefGoogle Scholar
  4. 4.
    Özdemir Ş K, Zhu J, Yang X, et al. Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering- gallery Raman microlaser. Proc Natl Acad Sci USA, 2014, 111: E3836E3844CrossRefGoogle Scholar
  5. 5.
    Schwelb O. Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filtersA tutorial overview. J Lightwave Technol, 2004; 22: 1380–1394CrossRefADSGoogle Scholar
  6. 6.
    Vahala K J. Optical Microcavities. Singapore: World Scientific, 2004Google Scholar
  7. 7.
    Zhang Y L, Chen Q D, Xia H, et al. Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today, 2010; 5: 435–448CrossRefGoogle Scholar
  8. 8.
    Sugioka K, Cheng Y. Ultrafast lasersreliable tools for advanced materials processing. Light Sci Appl, 2014, 3: e149CrossRefGoogle Scholar
  9. 9.
    Liao Y, Xu J, Cheng Y, et al. Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser. Opt Lett, 2008; 33: 2281–2283CrossRefADSGoogle Scholar
  10. 10.
    Zhan X P, Ku J F, Xu Y, et al. Unidirectional lasing from a spiral- shaped microcavity of dye-doped polymers fabricated by femtosecond laser direct writing. IEEE Photon Tech Lett, 2015; 27: 311–314CrossRefADSGoogle Scholar
  11. 11.
    Sun Y L, Dong W, Niu L G, et al. Soft micro-optics from protein fabricated by femtosecond laser direct writing. Light Sci Appl, 2014, 3: e129CrossRefGoogle Scholar
  12. 12.
    Zhu Z Q, Yan Z D, Zhan P, et al. Large-area surface-enhanced Raman scattering-active substrates fabricated by femtosecond laser ablation. Sci China-Phys Mech Atron, 2013; 56: 1806–1809CrossRefADSGoogle Scholar
  13. 13.
    Tan W, Yang Y, Si J, et al. Shape measurement of objects using an ultrafast optical Kerr gate of bismuth glass. J Appl Phys, 2010, 107: 043104CrossRefADSGoogle Scholar
  14. 13.
    Tan W, Zhan P, Si J H, et al. Sharpness-enhanced ultrafast imaging by using a biased optical Kerr gate. Opt Exp, 2014, 22: 2810028108ADSGoogle Scholar
  15. 14.
    Xu H L, Cheng Y, Chin S L, et al. Femtosecond laser ionization and fragmentation for environmental sensing. Laser Photon Rev, 2015; 9: 275–293CrossRefzbMATHGoogle Scholar
  16. 15.
    Li H L, Xu H L, Yang B, et al. Sensing combustion intermediates by femtosecond filament excitation. Opt Lett, 2013; 38: 1250–1252CrossRefADSGoogle Scholar
  17. 16.
    Chu W, Li H, Ni J, et al. Lasing action induced by femtosecond laser filamentation in ethanol flame for combustion diagnosis. Appl Phys Lett, 2014, 104: 091106CrossRefADSGoogle Scholar
  18. 17.
    Si J, Hirao K. Phase-matched second-harmonic generation in crosslinking polyurethane films by thermal-assisted optical poling. Appl Phys Lett, 2007, 91: 91105CrossRefGoogle Scholar
  19. 18.
    Yao J P, Zeng B, Xu H L, et al. High-brightness switchable multiwavelength remote laser in air. Phys Rev A, 2011, 84: 051802CrossRefADSGoogle Scholar
  20. 18.
    Chu W, Zeng B, Yao J, et al. Multiwavelength amplified harmonic emissions from carbon dioxide pumped by mid-infrared femtosecond laser pulses. Europhys Lett, 2012, 97: 64004CrossRefADSGoogle Scholar
  21. 19.
    Wang S F, Gong Q H. Progress in femtochemistry and femtobiology. Sci China-Phys Mech Atron, 2011; 54: 2103–2108CrossRefADSGoogle Scholar
  22. 20.
    Yang B S, Zhang L, Xu H L, et al. Fragmentation of hydrocarbon molecules in intense laser fields studied by coincidence momentum imaging: A review. Chin J Phys, 2014; 52: 652–674Google Scholar
  23. 21.
    Wu D, Chen Q, Niu L, et al. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices. Lab Chip, 2009; 9: 2391–2394CrossRefGoogle Scholar
  24. 22.
    Wang J, He Y, Xia H, et al. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization. Lab Chip, 2010; 10: 1993–1996CrossRefGoogle Scholar
  25. 23.
    Jin Y, Feng J, Zhang X, et al. Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode. Adv Mater, 2012; 24: 1187–1191CrossRefGoogle Scholar
  26. 24.
    Bi Y, Feng J, Li Y, et al. Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity. Adv Mater, 2013; 25: 6969–6974CrossRefGoogle Scholar
  27. 25.
    Zhang Y, Guo L, Wei S, et al. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today, 2010; 5: 15–20CrossRefGoogle Scholar
  28. 26.
    Xia H, Wang J, Tian Y, et al. Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization. Adv Mater, 2010; 22: 3204–3207CrossRefGoogle Scholar
  29. 27.
    Guo L, Xia H, Fan H, et al. Femtosecond laser direct patterning of sensing materials towards flexible integration of micronanosensors. Opt Lett, 2010; 35: 1695–1697CrossRefADSGoogle Scholar
  30. 28.
    Wu D, Chen Q, Yao J, et al. A simple strategy to realize biomimetic surfaces with controlled anisotropic wetting. Appl Phys Lett, 2010, 96: 053704CrossRefADSGoogle Scholar
  31. 29.
    Wu D, Wang J, Wu S, et al. Three-level biomimetic rice leaf surfaces with controllable anisotropic sliding. Adv Funct Mater, 2011; 21: 2927–2932CrossRefGoogle Scholar
  32. 30.
    Liu D, Sun Y, Dong W, et al. Dynamic laser prototyping for biomimetic nanofabrication. Laser Photon Rev, 2014; 8: 882–888MathSciNetCrossRefGoogle Scholar
  33. 31.
    Chen Q, Wu D, Niu L, et al. Phase lenses and mirrors created by laser micronanofabrication via two-photon photopolymerization. Appl Phys Lett, 2007, 91: 171105CrossRefADSGoogle Scholar
  34. 32.
    Wu D, Chen Q, Niu L, et al. 100% fill-factor aspheric microlens arrays (AMLA) with sub-20-nm precision. IEEE Photon Technol Lett, 2009; 21: 1535–1537CrossRefADSGoogle Scholar
  35. 33.
    Sun Y, Dong W, Yang R, et al. Dynamically tunable protein microlenses. Angew Chem Int Ed, 2012; 51: 1558–1562CrossRefGoogle Scholar
  36. 34.
    Grigorescu A E, Hagen C W. Resists for sub-20-nm electron beam lithography with a focus on HSQ: State of the art. Nanotechnology, 2009, 20: 292001CrossRefGoogle Scholar
  37. 35.
    Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices micromachines can be created with higher resolution using two-photon absorption. Nature, 2001; 412: 697–698CrossRefADSGoogle Scholar
  38. 36.
    Liu Z P, Li Y, Xiao Y F, et al. Direct laser writing of whispering gallery microcavities by two-photon polymerization. Appl Phys Lett, 2010, 97: 211105CrossRefADSGoogle Scholar
  39. 37.
    Grossmann T, Schleede S, Hauser M, et al. Direct laser writing for active and passive high-Q polymer microdisks on silicon. Opt Exp, 2011, 19: 1145111456ADSGoogle Scholar
  40. 38.
    Lin J, Yu S, Ma Y, et al. On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing. Opt Exp, 2012, 20: 1021210217Google Scholar
  41. 39.
    Sugioka K, Cheng Y. Femtosecond laser processing for optofluidic fabrication. Lab Chip, 2012; 12: 3576–3589CrossRefGoogle Scholar
  42. 40.
    Lin J, Xu Y, Tang J, et al. Fabrication of three-dimensional microdisk resonators in calcium fluoride by femtosecond laser micromachining. Appl Phys A, 2014; 116: 2019–2013CrossRefADSGoogle Scholar
  43. 41.
    Lin J, Xu Y, Fang Z, et al. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining. Sci Rep, 2015, 5: 8072CrossRefADSGoogle Scholar
  44. 42.
    Tada K, Gohoon G A, Kieu K, et al. Fabrication of high-Q microresonators using femtosecond laser micromachining. IEEE Photon Technol Lett, 2013; 25: 430–433CrossRefADSGoogle Scholar
  45. 43.
    Levi A F J, Slusher R E, McCall S L, et al. Directional light coupling from microdisk lasers. Appl Phys Lett, 1993; 62: 561–563CrossRefADSGoogle Scholar
  46. 44.
    Nöckel J U, Stone A D. Ray and wave chaos in asymmetric resonant optical cavities. Nature, 1997; 385: 45–47CrossRefADSGoogle Scholar
  47. 45.
    Jiang X, Xiao Y F, Zou C, et al. Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities. Adv Mater, 2012, 24: OP260OP264Google Scholar
  48. 46.
    Jiang X, Xiao Y F, Yang Q, et al. Free-space coupled, ultralowthreshold Raman lasing from a silica microcavity. Appl Phys Lett, 2013, 103: 101102CrossRefADSGoogle Scholar
  49. 47.
    Gmachl C, Capasso F, Narimanov E E, et al. High-power directional emission from microlasers with chaotic resonators. Science, 1998; 280: 1556–1564CrossRefADSGoogle Scholar
  50. 48.
    Xiao Y F, Dong C H, Han Z F, et al. Directional escape from a high-Q deformed microsphere induced by short CO2 laser pulses. Opt Lett, 2007; 32: 644–646CrossRefADSGoogle Scholar
  51. 49.
    Liu Z P, Jiang X F, Li Y, et al. High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization. Appl Phys Lett, 2013, 102: 221108CrossRefADSGoogle Scholar
  52. 50.
    Ku J F, Chen Q, Zhang R, et al. Whispering-gallery-mode microdisk lasers produced by femtosecond laser direct writing. Opt Lett, 2011; 36: 2871–2873CrossRefADSGoogle Scholar
  53. 51.
    Lin J, Xu Y, Song J, et al. Low-threshold whispering-gallery-mode microlasers fabricated in a Nd:glass substrate by three-dimensional femtosecond laser micromachining. Opt Lett, 2013; 38: 1458–1460CrossRefADSGoogle Scholar
  54. 52.
    Ku J F, Chen Q, Ma X, et al. Photonic-molecule single-mode laser. IEEE Photon Tech Lett, 2015; 27: 1157–1160CrossRefADSGoogle Scholar
  55. 53.
    Ta V D, Chen R, Sun H. Coupled polymer microfiber lasers for single mode operation and enhanced refractive index sensing. Adv Opt Mater, 2014; 2: 220–225CrossRefGoogle Scholar
  56. 54.
    Song J, Lin J, Tang J, et al. Fabrication of an integrated high-qualityfactor (high-Q) optofluidic sensor by femtosecond laser micromachining. Opt Exp, 2014, 22: 1479214802ADSGoogle Scholar
  57. 55.
    Savchenkow A A, Matsko A B, Ilchenko V S, et al. Optical resonators with ten million finesse. Opt Exp, 2007; 15: 6769–6773ADSGoogle Scholar
  58. 56.
    Lin G P, Diallo S, Henriet R, et al. Barium fluoride whisperinggallery- mode disk resonator with one billion quality-factor. Opt Lett, 2014; 39: 6009–6012CrossRefADSGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and EngineeringJilin UniversityChangchunChina

Personalised recommendations