Two-dimensional silicon-carbon hybrids with a honeycomb lattice: New family for two-dimensional photovoltaic materials

Article Condensed Matter Physics

Abstract

We predict a series of new two-dimensional (2D) inorganic materials made of silicon and carbon elements (2D SixC1-x) based on density functional theory. Our calculations on optimized structure, phonon dispersion, and finite temperature molecular dynamics confirm the stability of 2D SixC1-x sheets in a two-dimensional, graphene-like, honeycomb lattice. The electronic band gaps vary from zero to 2.5 eV as the ratio x changes in 2D SixC1-x changes, suggesting a versatile electronic structure in these sheets. Interestingly, among these structures Si0.25C0.75 and Si0.75C0.25 with graphene-like superlattices are semimetals with zero band gap as their π and π* bands cross linearly at the Fermi level. Atomic structural searches based on particle-swarm optimization show that the ordered 2D SixC1-x structures are energetically favorable. Optical absorption calculations demonstrate that the 2D silicon-carbon hybrid materials have strong photoabsorption in visible light region, which hold promising potential in photovoltaic applications. Such unique electronic and optical properties in 2D SixC1-x have profound implications in nanoelectronic and photovoltaic device applications.

Keywords

2D Si-C hybrids electronic structure photovoltaic materials first-principles calculations 

References

  1. 1.
    Novoselov K S A, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438: 197–200CrossRefADSGoogle Scholar
  2. 2.
    Geim A K. Graphene: Status and prospects. Science, 2009, 324: 1529–1534CrossRefADSGoogle Scholar
  3. 3.
    Zhang Y, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438: 201–204CrossRefADSGoogle Scholar
  4. 4.
    Wang Z F, Liu Z, Liu F. Quantum anomalous Hall effect in 2D organic topological insulators. Phys Rev Lett, 2013, 110: 196801CrossRefADSGoogle Scholar
  5. 5.
    Cahangirov S, Topsakal M, Aktürk E, et al. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett, 2009, 102: 236804CrossRefADSGoogle Scholar
  6. 6.
    Liu C C, Feng W, Yao Y. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys Rev Lett, 2011, 107: 076802CrossRefADSGoogle Scholar
  7. 7.
    Feng B, Ding Z, Meng S, et al. Evidence of silicene in honeycomb structures of silicon on Ag (111). Nano Lett, 2012, 12: 3507–3511CrossRefADSGoogle Scholar
  8. 8.
    Vogt P, De Padova P, Quaresima C, et al. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev Lett, 2012, 108: 155501CrossRefADSGoogle Scholar
  9. 9.
    Fleurence A, Friedlein R, Ozaki T, et al. Experimental evidence for epitaxial silicene on diboride thin films. Phys Rev Lett, 2012, 108: 245501CrossRefADSGoogle Scholar
  10. 10.
    Lalmi B, Oughaddou H, Enriquez H, et al. Epitaxial growth of a silicene sheet. Appl Phys Lett, 2010, 97: 223009CrossRefGoogle Scholar
  11. 11.
    Lin C L, Arafune R, Kawahara K, et al. Substrate-induced symmetry breaking in silicene. Phys Rev Lett, 2013, 110: 076801CrossRefADSGoogle Scholar
  12. 12.
    Chen L, Liu C C, Feng B, et al. Evidence for Dirac fermions in a honeycomb lattice based on silicon. Phys Rev Lett, 2012, 109: 056804CrossRefADSGoogle Scholar
  13. 13.
    Bekaroglu E, Topsakal M, Cahangirov S, et al. First-principles study of defects and adatoms in silicon carbide honeycomb structures. Phys Rev B, 2010, 81: 075433CrossRefADSGoogle Scholar
  14. 14.
    Drissi L B, Saidi E H, Bousmina M, et al. DFT investigations of the hydrogenation effect on silicene/graphene hybrids. J Phys Condens Matter, 2012, 24: 485502CrossRefGoogle Scholar
  15. 15.
    Dai J, Zhao Y, Wu X, et al. Exploration of structures of two-dimensional boron–silicon compounds with sp2 silicon. J Phys Chem Lett, 2013, 4: 561–567CrossRefGoogle Scholar
  16. 16.
    Luo X, Yang J, Liu H, et al. Predicting two-dimensional boron–carbon compounds by the global optimization method. J Am Chem Soc, 2011, 133: 16275–16280Google Scholar
  17. 17.
    Zhang Z, Liu X, Yakobson B I, et al. Two-dimensional tetragonal TiC monolayer sheet and nanoribbons. J Am Chem Soc, 2012, 134: 19326–19328CrossRefGoogle Scholar
  18. 18.
    Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotech, 2012, 7: 699–712CrossRefADSGoogle Scholar
  19. 19.
    Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: A new direct- gap semiconductor. Phys Rev Lett, 2010, 105: 136805CrossRefADSGoogle Scholar
  20. 20.
    Bernardi M, Palummo M, Grossman J C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett, 2013, 13: 3664–3670CrossRefADSGoogle Scholar
  21. 21.
    Zhong P, Que W X, Zhang J, et al. Enhancing the performance of poly(3-hexylthiophene)/ZnO nanorod arrays based hybrid solar cells through incorporation of a third component. Sci China-Phys Mech Astron, 2014, 57: 1289–1298CrossRefADSGoogle Scholar
  22. 22.
    Wu B, Li W B, Yu H M, et al. Photoinduced charge injection in the metal/organic interface studied by transient photovoltage measurements with bias. Sci China-Phys Mech Astron, 2013, 56: 2012–2015CrossRefADSGoogle Scholar
  23. 23.
    Qin D S, Li G F, Quan W, et al. The improved performance in the ternary bulk heterojunction solar cells. Sci China-Phys Mech Astron, 2013, 56: 530–534CrossRefADSGoogle Scholar
  24. 24.
    Wu W, Wang L, Li Y, et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronic. Nature, 2014, 514: 470–474CrossRefADSGoogle Scholar
  25. 25.
    Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169CrossRefADSGoogle Scholar
  26. 26.
    Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59: 1758CrossRefADSGoogle Scholar
  27. 27.
    Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865CrossRefADSGoogle Scholar
  28. 28.
    Wang Y, Lü J, Zhu L, et al. Crystal structure prediction via particle- swarm optimization. Phys Rev B, 2010, 82: 094116CrossRefADSGoogle Scholar
  29. 29.
    Togo A, Oba F, Tanaka I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys Rev B, 2008, 78: 134106CrossRefADSGoogle Scholar
  30. 30.
    Sanville E, Kenny S D, Smith R, et al. Improved grid-based algorithm for Bader charge allocation. J Comput Chem, 2007, 27: 899–908CrossRefGoogle Scholar
  31. 31.
    Tang W, Sanville E, Henkelman G. A grid-based Bader analysis algorithm without lattice bias. J Phys Condens Matter, 2009, 21: 084204CrossRefADSGoogle Scholar
  32. 32.
    Li Y, Li F, Zhou Z, et al. SiC2 silagraphene and its one-dimensional derivatives: Where planar tetracoordinate silicon happens. J Am Chem Soc, 2010, 133: 900–908CrossRefGoogle Scholar
  33. 33.
    Zhou L J, Zhang Y F, Wu L M. SiC2 siligraphene and nanotubes: Novel donor materials in excitonic solar cells. Nano Lett, 2013, 13: 5431–5436CrossRefADSGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Department of PhysicsTsinghua UniversityBeijingChina
  3. 3.Collaborative Innovation Center of Quantum MatterBeijingChina

Personalised recommendations