An accurate determination of the Hubble constant from baryon acoustic oscillation datasets

Abstract

Even though the Hubble constant cannot be significantly determined just by the low-redshift Baryon Acoustic Oscillation (BAO) data, it can be tightly constrained once the high-redshift BAO data are combined. We combined BAO data from 6dFGS, BOSS DR11 clustering of galaxies, WiggleZ and z = 2.34 from BOSS DR11 quasar Lyman-α forest lines to get H 0 = 68.17 +1.55-1.56 km s-1 Mpc-1. In addition, we adopted the simultaneous measurements of H(z) and D A (z) from the two-dimensional two-point correlation function from BOSS DR9 CMASS sample and two-dimensional matter power spectrum from SDSS DR7 sample to obtain H 0 = (68.11 ± 1.69) km s-1 Mpc-1. Finally, combining all of the BAO datasets, we conclude that H 0 = (68.11 ± 0.86) km s-1 Mpc-1, a 1.3% determination.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Hubble E. A relation between distance and radial velocity among extragalactic nebulae. Proc Natl Acad Sci USA, 1929, 15: 168–173

    MATH  Article  ADS  Google Scholar 

  2. 2

    Freedman W L, Madore B F, Gibson B K, et al. Final results from the Hubble space telescope key project to measure the Hubble constant. Astrophys J, 2001, 553: 47–72

    Article  ADS  Google Scholar 

  3. 3

    Riess A G, Macri L, Casertano S, et al. A 3% solution: Determination of the Hubble constant with the Hubble space telescope and wide field camera 3. Astrophys J, 2011, 730: 119

    Article  ADS  Google Scholar 

  4. 4

    Hinshaw G F. Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: Cosmology results. Astrophys J Suppl S, 2013, 208: 19

    Article  ADS  Google Scholar 

  5. 5

    Planck C, Aghanim N, Armitage-Caplan C, et al. Planck 2013 results. XVI. cosmological parameters. Astron Astrophys, 2014, 571: A16

    Article  ADS  Google Scholar 

  6. 6

    Efstathiou G. H 0 revisited. Mon Not R Astron Soc, 2014, 440: 1138–1152

    Article  ADS  Google Scholar 

  7. 7

    Beutler F, Blake C, Colless M, et al. The 6dF galaxy survey: Baryon acoustic oscillations and the local Hubble constant. Mon Not R Astron Soc, 2011, 416: 3017–3032

    Article  ADS  Google Scholar 

  8. 8

    Anderson L, Aubourg É, Bailey S, et al. The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data releases 10 and 11 galaxy samples. Mon Not R Astron Soc, 2014, 441: 24–62

    Article  ADS  Google Scholar 

  9. 9

    Delubac T, Bautista J E, Busca N G, et al. Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars. arXiv: 1404.1801

  10. 10

    Bennett C L, Larson D, Weiland J L, et al. The 1%concordance Hubble constant. Astrophys J, 2014, 794: 135

    Article  ADS  Google Scholar 

  11. 11

    Eisenstein D J, Zehavi I, Hogg D W, et al. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys J, 2005, 633: 560–574

    Article  ADS  Google Scholar 

  12. 12

    Chuang C H, Wang Y. Measurements of H(z) and DA(z) from the twodimensional two-point correlation function of Sloan digital sky survey luminous red galaxies. Mon Not R Astron Soc, 2012, 426: 226–236

    Article  ADS  Google Scholar 

  13. 13

    Chuang C H, Wang Y. Using multipoles of the correlation function to measure H(z), DA(z) and β(z) from Sloan digital sky survey luminous red galaxies. Mon Not R Astron Soc, 2013, 431: 2634–2644

    Article  ADS  Google Scholar 

  14. 14

    Chuang C H, Wang Y. Modeling the anisotropic two-point galaxy correlation function on small scales and improved measurements of H(z), DA(z), and β(z) from the Sloan digital sky survey DR7 luminous red galaxies. Mon Not R Astron Soc, 2013, 435: 255–262

    Article  ADS  Google Scholar 

  15. 15

    Chuang C H, Prada F, Cuesta A J, et al. The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: Single-probe measurements and the strong power of normalized growth rate on constraining dark energy. arXiv: 1312.4889 [astro-ph.CO]

  16. 16

    Hemantha M D P, Wang Y, Chuang C H. Measurement of H(z) and DA(z) from the two-dimensional power spectrum of Sloan digital sky survey luminous red galaxies. Mon Not R Astron Soc, 2014, 445: 3737–3744

    Article  ADS  Google Scholar 

  17. 17

    Chevallier M, Polarski D. Accelerating universes with scaling dark matter. Int J Mod Phys D, 2001, 10: 213; Linder E V. Exploring the expansion history of the universe. Phys Rev Lett, 2003, 90: 091301

    Article  ADS  Google Scholar 

  18. 18

    Eisenstein D J, Hu W. Baryonic features in the matter transfer function. Astrophys J, 1998, 496: 605–614

    Article  ADS  Google Scholar 

  19. 19

    Kazin E A, Koda J, Blake C, et al. Improved WiggleZ dark energy survey distance measurements to z=1 with reconstruction of the baryonic acoustic feature. arXiv: 1401.0358

  20. 20

    Suzuki N, Rubin D, Lidman C, et al. The Hubble space telescope cluster supernova survey: V. improving the dark energy constraints above z > 1 and building an early-type-hosted supernova sample. Astrophys J, 2012, 746: 85

    Article  ADS  Google Scholar 

  21. 21

    Wu J, Li Z X, Wu P X, et al. Constrains on f(T) gravity with the strong gravitational lensing data. Sci China-Phys Mech Astron, 2014, 57: 988–993

    Article  ADS  Google Scholar 

  22. 22

    Zhang M, Sun C Y, Yang Z Y, et al. Cosmological evolution of quintessence with a sign-changing interaction in dark sector. Sci China-Phys Mech Astron, 2014, 57: 1805–1808

    Article  ADS  Google Scholar 

  23. 23

    Hu Y Z, Li M, Li X D, et al. Investigating the possibility of a turning point in the dark energy equation of state. Sci China-Phys Mech Astron, 2014, 57: 1607–1612

    Article  ADS  Google Scholar 

  24. 24

    Li Z X, Wu P X, Yu H W, et al. A possible resolution of tension between Planck and Type Ia supernova observations. Sci China-Phys Mech Astron, 2014, 57: 381–386

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to QingGuo Huang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, C., Huang, Q. An accurate determination of the Hubble constant from baryon acoustic oscillation datasets. Sci. China Phys. Mech. Astron. 58, 599801 (2015). https://doi.org/10.1007/s11433-015-5684-5

Download citation

Keywords

  • Hubble constant
  • baryon acoustic oscillation
  • large-scale structure