Advertisement

Introduction to holographic superconductor models

  • RongGen CaiEmail author
  • Li Li
  • LiFang Li
  • RunQiu Yang
Invited Reviews Theoretical Physics

Abstract

In the last years it has been shown that some properties of strongly coupled superconductors can be potentially described by classical general relativity living in one higher dimension, which is known as holographic superconductors. This paper gives a quick and introductory overview of some holographic superconductor models with s-wave, p-wave and d-wave orders in the literature from point of view of bottom-up, and summarizes some basic properties of these holographic models in various regimes. The competition and coexistence of these superconductivity orders are also studied in these superconductor models.

Keywords

holographic duality superconductivity classical theories of gravity conformal field theory 
060401 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bardeen J, Cooper L N, Schrieffer J R. Theory of superconductivity. Phys Rev, 1957, 108: 1175–1204ADSzbMATHMathSciNetGoogle Scholar
  2. 2.
    Carlson E W, Emery V J, Kivelson S A, et al. Concepts in high temperature superconductivity. In: The Physics of Superconductors. Berlin: Springer, 2004. 275–451Google Scholar
  3. 3.
    Maldacena J M. The large N limit of superconformal field theories and supergravity. Int J Theor Phys, 1999, 38: 1113–1133zbMATHMathSciNetGoogle Scholar
  4. 4.
    Gubser S S, Klebanov I R, Polyakov A M. Gauge theory correlators from non-critical string theory. Phys Lett B, 1998, 428: 105–114. [arXiv: 9802109 [hep-th]]ADSMathSciNetGoogle Scholar
  5. 5.
    Witten E. Anti-de sitter space and holography. Adv TheorMath Phys, 1998, 2: 253–291. [arXiv: 9802150 [hep-th]]ADSzbMATHMathSciNetGoogle Scholar
  6. 6.
    Qi X L. Exact holographic mapping and emergent space-time geometry. [arXiv: 1309.6282 [hep-th]]Google Scholar
  7. 7.
    Horowitz G T. Introduction to holographic superconductors. Lect Notes Phys, 2011, 828: 313–347. [arXiv: 1002.1722 [hep-th]]ADSGoogle Scholar
  8. 8.
    Herzog C P. Lectures on holographic superfluidity and superconductivity. J Phys A, 2009, 42: 343001. [arXiv: 0904.1975 [hep-th]]MathSciNetGoogle Scholar
  9. 9.
    Iqbal N, Liu H, Mezei M. Lectures on holographic non-Fermi liquids and quantum phase transitions. [arXiv: 1110.3814 [hep-th]]Google Scholar
  10. 10.
    Musso D. Introductory notes on holographic superconductors. [arXiv: 1401.1504 [hep-th]]Google Scholar
  11. 11.
    Hartnoll S A, Herzog C P, Horowitz G T. Building a holographic superconductor. Phys Rev Lett, 2008, 101: 031601. [arXiv: 0803.3295 [hep-th]]ADSGoogle Scholar
  12. 12.
    Hartnoll S A, Herzog C P, Horowitz G T. Holographic superconductors. J High Energy Phys, 2008, 0812: 015. [arXiv: 0810.1563 [hepth]]ADSMathSciNetGoogle Scholar
  13. 13.
    Nishioka T, Ryu S, Takayanagi T. Holographic superconductor/insulator transition at zero temperature. J High Energy Phys, 2010, 1003: 131. [arXiv: 0911.0962 [hep-th]]ADSGoogle Scholar
  14. 14.
    Chen J-W, Kao Y-J, Maity D, et al. Towards a holographic model of d-wave superconductors. Phys Rev D, 2010, 81: 106008. [arXiv: 1003.2991 [hep-th]]ADSGoogle Scholar
  15. 15.
    Benini F, Herzog C P, Rahman R, et al. Gauge gravity duality for d-wave superconductors: Prospects and challenges. J High Energy Phys, 2010, 1011: 137. [arXiv: 1007.1981 [hep-th]]ADSMathSciNetGoogle Scholar
  16. 16.
    Mackenzie A P, Maeno Y. P-wave superconductivity. Physica B. 2000, 280: 148–153ADSGoogle Scholar
  17. 17.
    Gubser S S, Pufu S S. The Gravity dual of a p-wave superconductor. J High Energy Phys, 2008, 0811: 033. [arXiv: 0805.2960 [hep-th]]ADSMathSciNetGoogle Scholar
  18. 18.
    Cai R G, He S, Li L, et al. A holographic study on vector condensate induced by a magnetic field. J High Energy Phys, 2013, 1312: 036. [arXiv: 1309.2098 [hep-th]]ADSGoogle Scholar
  19. 19.
    Cai R -G, Li L, Li L -F. A holographic p-wave superconductor model. J High Energy Phys, 2014, 1401: 032. [arXiv: 1309.4877 [hep-th]]ADSGoogle Scholar
  20. 20.
    Aprile F, Rodriguez-Gomez D, Russo J G. P-wave holographic superconductors and five-dimensional gauged supergravity. J High Energy Phys, 2011, 1101: 056. [arXiv: 1011.2172 [hep-th]]ADSMathSciNetGoogle Scholar
  21. 21.
    Donos A, Gauntlett J P. Holographic helical superconductors. J High Energy Phys, 2011, 1112: 091. [arXiv: 1109.3866 [hep-th]]ADSMathSciNetGoogle Scholar
  22. 22.
    Donos A, Gauntlett J P. Helical superconducting black holes. Phys Rev Lett, 2012, 108: 211601. [arXiv: 1203.0533 [hep-th]]ADSGoogle Scholar
  23. 23.
    Denef F, Hartnoll S A. Landscape of superconducting membranes. Phys Rev D, 2009, 79: 126008. [arXiv: 0901.1160 [hep-th]]ADSMathSciNetGoogle Scholar
  24. 24.
    Gubser S S, Herzog C P, Pufu S S, et al. Superconductors from superstrings. Phys Rev Lett, 2009, 103: 141601. [arXiv: 0907.3510 [hep-th]]ADSMathSciNetGoogle Scholar
  25. 25.
    Gauntlett J P, Sonner J, Wiseman T. Holographic superconductivity in M-Theory. Phys Rev Lett, 2009, 103: 151601. [arXiv: 0907.3796 [hep-th]]ADSMathSciNetGoogle Scholar
  26. 26.
    Gubser S S, Pufu S S, Rocha F D. Quantum critical superconductors in string theory and M-theory. Phys Lett B, 2010, 683: 201–204. [arXiv: 0908.0011 [hep-th]]ADSMathSciNetGoogle Scholar
  27. 27.
    Gauntlett J P, Sonner J, Wiseman T. Quantum criticality and holographic superconductors in M-theory. J High Energy Phys, 2010, 1002: 060. [arXiv: 0912.0512 [hep-th]]ADSMathSciNetGoogle Scholar
  28. 28.
    Kalyana R S, Sarkar S, Sathiapalan B, et al. Strong coupling BCS superconductivity and holography. Nucl Phys B, 2011, 852: 634–680. [arXiv: 1104.2843 [hep-th]]ADSzbMATHGoogle Scholar
  29. 29.
    Bobev N, Kundu A, Pilch K, et al. Minimal holographic superconductors from maximal supergravity. J High Energy Phys, 2012, 1203: 064. [arXiv: 1110.3454 [hep-th]]ADSMathSciNetGoogle Scholar
  30. 30.
    Ginzburg V L, Landau L D. On the theory of superconductivity. Zh Eksp Teor Fiz, 1950, 20: 1064–1082Google Scholar
  31. 31.
    Cyrot M. Ginzburg-Landau theory for superconductors. Rep Prog Phys, 1973, 36: 103ADSGoogle Scholar
  32. 32.
    Weinberg S. Superconductivity for particular theorists. Prog Theor Phys Supp, 1986, 86: 43–53ADSGoogle Scholar
  33. 33.
    Kachru S, Liu X, Mulligan M. Gravity duals of Lifshitz-like fixed points. Phys Rev D, 2008, 78: 106005. [arXiv: 0808.1725 [hep-th]]ADSMathSciNetGoogle Scholar
  34. 34.
    Son D T. Toward an AdS/cold atoms correspondence: A geometric realization of the schrodinger symmetry. Phys Rev D, 2008, 78: 046003. [arXiv: 0804.3972 [hep-th]]ADSMathSciNetGoogle Scholar
  35. 35.
    Balasubramanian K, McGreevy J. Gravity duals for non-relativistic CFTs. Phys Rev Lett, 2008, 101: 061601. [arXiv: 0804.4053 [hepth]]ADSMathSciNetGoogle Scholar
  36. 36.
    Charmousis C, Gouteraux B, Kim B S, et al. Effective holographic theories for low-temperature condensed matter systems. J High Energy Phys, 2010, 1011: 151. [arXiv: 1005.4690 [hep-th]]ADSGoogle Scholar
  37. 37.
    Gouteraux B, Kiritsis E. Generalized holographic quantum criticality at finite density. J High Energy Phys, 2011, 1112: 036. [arXiv: 1107.2116 [hep-th]]ADSGoogle Scholar
  38. 38.
    Huijse L, Sachdev S, Swingle B. Hidden fermi surfaces in compressible states of gauge-gravity duality. Phys Rev B, 2012, 85: 035121. [arXiv: 1112.0573 [cond-mat.str-el]]ADSGoogle Scholar
  39. 39.
    Dong X, Harrison S, Kachru S, et al. Aspects of holography for theories with hyperscaling violation. J High Energy Phys, 2012, 1206: 041. [arXiv: 1201.1905 [hep-th]]ADSGoogle Scholar
  40. 40.
    Kim B S. Schródinger holography with and without hyperscaling violation. J High Energy Phys, 2012, 1206: 116. [arXiv: 1202.6062 [hep-th]]ADSGoogle Scholar
  41. 41.
    Breitenlohner P, Freedman D Z. Stability in gauged extended supergravity. Annals Phys, 1982, 144: 249–281ADSzbMATHMathSciNetGoogle Scholar
  42. 42.
    Peet A W, Polchinski J. UV/IR relations in AdS dynamics. Phys Rev D, 1999, 59: 065011. [arXiv: 9809022 [hep-th]]ADSMathSciNetGoogle Scholar
  43. 43.
    Balasubramanian V, Kraus P. A Stress tensor for Anti-de Sitter gravity. Commun Math Phys, 1999, 208: 413–428. [arXiv: 9902121 [hep-th]]ADSzbMATHMathSciNetGoogle Scholar
  44. 44.
    Bianchi M, Freedman D Z, Skenderis K. How to go with an RG flow. J High Energy Phys, 2001, 0108: 041. [arXiv: 0105276 [hep-th]]ADSMathSciNetGoogle Scholar
  45. 45.
    Bianchi M, Freedman D Z, Skenderis K. Holographic renormalization. Nucl Phys B, 2002, 631: 159–194. [arXiv: 0112119 [hep-th]]ADSzbMATHMathSciNetGoogle Scholar
  46. 46.
    Son D T, Starinets A O. Minkowski space correlators in AdS/CFT correspondence: Recipe and applications. J High Energy Phys, 2002, 0209: 042. [arXiv: 0205051 [hep-th]]ADSMathSciNetGoogle Scholar
  47. 47.
    Herzog C P, Son D T. Schwinger-Keldysh propagators from AdS/CFT correspondence. J High Energy Phys, 2003, 0303: 046. [arXiv: 0212072 [hep-th]]ADSMathSciNetGoogle Scholar
  48. 48.
    Skenderis K, van Rees B C. Real-time gauge/gravity duality. Phys Rev Lett, 2008, 101: 081601. [arXiv: 0805.0150 [hep-th]]ADSMathSciNetGoogle Scholar
  49. 49.
    Klebanov I R, Witten E. AdS/CFT correspondence and symmetry breaking. Nucl Phys B, 1999, 556: 89–114. [arXiv: 9905104 [hepth]]ADSzbMATHMathSciNetGoogle Scholar
  50. 50.
    Witten E. Multitrace operators, boundary conditions, and AdS/CFT correspondence. [arXiv: 0112258 [hep-th]]Google Scholar
  51. 51.
    Berkooz M, Sever A, Shomer A. ’Double trace’ deformations, boundary conditions and space-time singularities. J High Energy Phys, 2002, 0205: 034. [arXiv: 0112264 [hep-th]]ADSMathSciNetGoogle Scholar
  52. 52.
    Hawking S W. Breakdown of predictability in gravitational collapse. Phys Rev D, 1976, 14: 2460–2473ADSMathSciNetGoogle Scholar
  53. 53.
    Hawking S W. Information loss in black holes. Phys Rev D, 2005, 72: 084013. [arXiv: 0507171 [hep-th]]ADSMathSciNetGoogle Scholar
  54. 54.
    Hawking S W. Information preservation and weather forecasting for black holes. [arXiv: 1401.5761 [hep-th]]Google Scholar
  55. 55.
    Aharony O, Gubser S S, Maldacena J M, et al. Large N field theories, string theory and gravity. Phys Rept, 2000, 323: 183–386. [arXiv: 9905111 [hep-th]]ADSMathSciNetGoogle Scholar
  56. 56.
    Hartnoll S A. Lectures on holographic methods for condensed matter physics. Class Quant Grav, 2009, 26: 224002. [arXiv: 0903.3246 [hep-th]]ADSMathSciNetGoogle Scholar
  57. 57.
    McGreevy J. Holographic duality with a view toward many-body physics. Adv High Energy Phys, 2010, 2010: 723105. [arXiv: 0909.0518 [hep-th]]Google Scholar
  58. 58.
    Casalderrey-Solana J, Liu H, Mateos D, et al. Gauge/String duality, hot QCD and heavy ion collisions. [arXiv: 1101.0618 [hep-th]]Google Scholar
  59. 59.
    Adams A, Carr L D, Schfer T, et al. Strongly correlated quantum fluids: Ultracold quantum gases, quantum chromodynamic plasmas, and holographic duality. New J, Phys, 2012, 14: 115009. [arXiv: 1205.5180 [hep-th]]MathSciNetGoogle Scholar
  60. 60.
    Sachdev S.What can gauge-gravity duality teach us about condensed matter physics? Ann Rev Condensed Matter Phys, 2012, 3: 9–33. [arXiv: 1108.1197 [cond-mat.str-el]]Google Scholar
  61. 61.
    Franco S, Garcia-Garcia A, Rodriguez-Gomez D. A general class of holographic superconductors. J High Energy Phys, 2010, 1004: 092. [arXiv: 0906.1214 [hep-th]]ADSGoogle Scholar
  62. 62.
    Aprile F, Russo J G. Models of holographic superconductivity. Phys Rev D, 2010, 81: 026009. [arXiv: 0912.0480 [hep-th]]ADSGoogle Scholar
  63. 63.
    Aprile F, Franco S, Rodriguez-Gomez D, et al. Phenomenological models of holographic superconductors and hall currents. J High Energy Phys, 2010, 1005: 102. [arXiv: 1003.4487 [hep-th]]ADSGoogle Scholar
  64. 64.
    Liu Y, Sun Y W. Holographic superconductors from einsteinmaxwell-dilaton gravity. J High Energy Phys, 2010, 1007: 099. [arXiv: 1006.2726 [hep-th]]ADSGoogle Scholar
  65. 65.
    Chen S, Pan Q, Jing J. Holographic superconductor models in the non-minimal derivative coupling theory. Chin Phys B, 2012, 21: 040403. [arXiv: 1012.3820 [gr-qc]]ADSGoogle Scholar
  66. 66.
    Peng Y, Pan Q, Wang B. Various types of phase transitions in the AdS soliton background. Phys Lett B, 2011, 699: 383–387. [arXiv: 1104.2478 [hep-th]]ADSGoogle Scholar
  67. 67.
    Bigazzi F, Cotrone A L, Musso D, et al. Unbalanced holographic superconductors and spintronics. J High Energy Phys, 2012, 1202: 078. [arXiv: 1111.6601 [hep-th]]ADSGoogle Scholar
  68. 68.
    Dey A, Mahapatra S, Sarkar T. Generalized holographic superconductors with higher derivative couplings. J High Energy Phys, 2014, 1406: 147. [arXiv: 1404.2190 [hep-th]]ADSGoogle Scholar
  69. 69.
    Arean D, Tarrio J. Bifundamental superfluids from holography. [arXiv: 1501.02804 [hep-th]]Google Scholar
  70. 70.
    Gubser S S. Breaking an Abelian gauge symmetry near a black hole horizon. Phys Rev D, 2008, 78: 065034. [arXiv: 0801.2977 [hep-th]]ADSGoogle Scholar
  71. 71.
    Faulkner T, Horowitz G T, Roberts M M. Holographic quantum criticality from multi-trace deformations. J High Energy Phys, 2011, 1104: 051. [arXiv: 1008.1581 [hep-th]]ADSMathSciNetGoogle Scholar
  72. 72.
    Horowitz G T, Roberts M M. Holographic superconductors with various condensates. Phys Rev D, 2008, 78: 126008. [arXiv: 0810.1077 [hep-th]]ADSGoogle Scholar
  73. 73.
    Horowitz G T, Roberts M M. Zero temperature limit of holographic superconductors. J High Energy Phys, 2009, 0911: 015. [arXiv: 0908.3677 [hep-th]]ADSMathSciNetGoogle Scholar
  74. 74.
    Maeda K, Okamura T. Characteristic length of an AdS/CFT superconductor. Phys Rev D, 2008, 78: 106006. [arXiv: 0809.3079 [hep-th]]ADSMathSciNetGoogle Scholar
  75. 75.
    Maeda K, Natsuume M, Okamura T. Vortex lattice for a holographic superconductor. Phys Rev D, 2010, 81: 026002. [arXiv: 0910.4475 [hep-th]]ADSGoogle Scholar
  76. 76.
    Faulkner T, Horowitz G T, McGreevy J, et al. Photoemission ‘experiments’ on holographic superconductors. J High Energy Phys, 2010, 1003: 121. [arXiv: 0911.3402 [hep-th]]ADSGoogle Scholar
  77. 77.
    Bagrov A, Meszena B, Schalm K. Pairing induced superconductivity in holography. J High Energy Phys, 2014, 1409: 106. [arXiv: 1403.3699 [hep-th]]ADSGoogle Scholar
  78. 78.
    Horowitz G T, Way B. Complete phase diagrams for a holographic superconductor/insulator system. J High Energy Phys, 2010, 1011: 011. [arXiv: 1007.3714 [hep-th]]ADSGoogle Scholar
  79. 79.
    Cai R G, He S, Li L, et al. Holographic entanglement entropy in insulator/superconductor transition. J High Energy Phys, 2012, 1207: 088. [arXiv: 1203.6620 [hep-th]]ADSGoogle Scholar
  80. 80.
    Cai R G, He S, Li L, et al. Entanglement entropy and wilson loop in St’uckelberg holographic insulator/superconductor model. J High Energy Phys, 2012, 1210: 107. [arXiv: 1209.1019 [hep-th]]ADSGoogle Scholar
  81. 81.
    Yao W, Jing J. Holographic entanglement entropy in insulator/superconductor transition with Born-Infeld electrodynamics. J High Energy Phys, 2014, 1405: 058. [arXiv: 1401.6505 [hep-th]]ADSGoogle Scholar
  82. 82.
    Basu P, He J, Mukherjee A, et al. Hard-gapped holographic superconductors. Phys Lett B, 2010, 689: 45–50. [arXiv: 0911.4999 [hep-th]]ADSGoogle Scholar
  83. 83.
    Roberts M M, Hartnoll S A. Pseudogap and time reversal breaking in a holographic superconductor. J High Energy Phys, 2008, 0808: 035. [arXiv: 0805.3898 [hep-th]]ADSGoogle Scholar
  84. 84.
    Akhavan A, Alishahiha M. P-wave holographic insulator/superconductor phase transition. Phys Rev D, 2011, 83: 086003. [arXiv: 1011.6158 [hep-th]]ADSGoogle Scholar
  85. 85.
    Ammon M, Erdmenger J, Kerner P, et al. Black hole instability induced by a magnetic field. Phys Lett B, 2011, 706: 94–99. [arXiv: 1106.4551 [hep-th]]ADSGoogle Scholar
  86. 86.
    Bu Y-Y, Erdmenger J, Shock J P, et al. Magnetic field induced lattice ground states from holography. J High Energy Phys, 2013, 1303: 165. [arXiv: 1210.6669 [hep-th]]ADSGoogle Scholar
  87. 87.
    Ammon M, Erdmenger J, Kaminski M, et al. Superconductivity from gauge/gravity duality with flavor. Phys Lett B, 2009, 680: 516–520. [arXiv: 0810.2316 [hep-th]]ADSGoogle Scholar
  88. 88.
    Basu P, He J, Mukherjee A, et al. Superconductivity from D3/D7: Holographic pion superfluid. J High Energy Phys, 2009, 0911: 070. [arXiv: 0810.3970 [hep-th]]ADSGoogle Scholar
  89. 89.
    Ammon M, Erdmenger J, Kaminski M, et al. Flavor superconductivity from gauge/gravity duality. J High Energy Phys, 2009, 0910: 067. [arXiv: 0903.1864 [hep-th]]ADSMathSciNetGoogle Scholar
  90. 90.
    Ammon M, Erdmenger J, Grass V, et al. On holographic p-wave superfluids with back-reaction. Phys Lett B, 2010, 686: 192–198. [arXiv: 0912.3515 [hep-th]]ADSGoogle Scholar
  91. 91.
    Cai R-G, Nie Z-Y, Zhang H-Q. Holographic phase transitions of pwave superconductors in Gauss-Bonnet gravity with back-reaction. Phys Rev D, 2011, 83: 066013. [arXiv: 1012.5559 [hep-th]]ADSGoogle Scholar
  92. 92.
    Cai R-G, Nie Z-Y, Zhang H-Q. Holographic p-wave superconductors from Gauss-Bonnet gravity. Phys Rev D, 2010, 82: 066007. [arXiv: 1007.3321 [hep-th]]ADSGoogle Scholar
  93. 93.
    Pando Zayas L A, Reichmann D. A holographic chiral p x + ip y superconductor. Phys Rev D, 2012, 85: 106012. [arXiv: 1108.4022 [hep-th]]ADSGoogle Scholar
  94. 94.
    Cai R-G, He S, Li L, et al. Holographic entanglement entropy on p-wave superconductor phase transition. J High Energy Phys, 2012, 1207: 027. [arXiv: 1204.5962 [hep-th]]ADSGoogle Scholar
  95. 95.
    Arias R E, Landea I S. Backreacting p-wave superconductors. J High Energy Phys, 2013, 1301: 157. [arXiv: 1210.6823 [hep-th]]ADSGoogle Scholar
  96. 96.
    Cai R-G, Li L, Li L-F, et al. Entanglement entropy in holographic p-wave superconductor/insulator model. J High Energy Phys, 2013, 1306: 063. [arXiv: 1303.4828 [hep-th]]ADSMathSciNetGoogle Scholar
  97. 97.
    Djukanovic D, Schindler M R, Gegelia J, et al. Quantum electrodynamics for vector mesons. Phys Rev Lett, 2005, 95: 012001. [arXiv: hep-ph/0505180]ADSGoogle Scholar
  98. 98.
    Young J A, Bludman S A. Electromagnetic properties of a charged vector meson. Phys Rev, 1963, 131: 2326–2334ADSGoogle Scholar
  99. 99.
    Mark Rasolt. Superconductivity in high magnetic fields. Phys Rev Lett, 1987, 58: 1482Google Scholar
  100. 100.
    Rasolt M, Tesanovic Z. Theoretical aspects of superconductivity in very high magnetic fields. Rev Mod Phys, 1992, 64: 709–754ADSGoogle Scholar
  101. 101.
    Levy F, Sheikin I, Grenier B, et al. Magnetic field-induced superconductivity in the ferromagnet URhGe. Science, 2005, 309: 1343–1346ADSGoogle Scholar
  102. 102.
    Uji S, Shinagawa H, Terashima T, et al. Magnetic-field-induced superconductivity in a two-dimensional organic conductor. Nature, 2010, 410: 908–910ADSGoogle Scholar
  103. 103.
    Cai R G, Li L, Li L F, et al. Vector condensate and AdS soliton instability induced by a magnetic field. J High Energy Phys, 2014, 1401: 045. [arXiv: 1311.7578 [hep-th]]ADSGoogle Scholar
  104. 104.
    Chernodub M N. Superconductivity of QCD vacuum in strong magnetic field. Phys Rev D, 2010, 82: 085011. [arXiv: 1008.1055 [hepph]]ADSGoogle Scholar
  105. 105.
    Chernodub M N. Spontaneous electromagnetic superconductivity of vacuum in strong magnetic field: evidence from the Nambu-Jona-Lasinio model. Phys Rev Lett, 2011, 106: 142003. [arXiv: 1101.0117 [hep-ph]]ADSGoogle Scholar
  106. 106.
    Cai R-G, Li L, Li L-F, et al. Towards complete phase diagrams of a holographic p-wave superconductor model. J High Energy Phys, 2014, 1404: 016. [arXiv: 1401.3974 [gr-qc]]ADSGoogle Scholar
  107. 107.
    Maslov V P. Zeroth-order phase transitions. Mathematical Notes, 2004, 76: 697–710zbMATHMathSciNetGoogle Scholar
  108. 108.
    Zeng H B. Possible anderson localization in a holographic superconductor. Phys Rev D, 2013, 88: 126004. [arXiv: 1310.5753 [hep-th]]ADSGoogle Scholar
  109. 109.
    Zeng H B, Zhang H Q. Zeroth order phase transition in a holographic superconductor with single impurity. arXiv: 1411.3955 [hep-th]Google Scholar
  110. 110.
    Chaturvedi P, Sengupta G. P-wave holographic superconductors from born-infeld black holes. arXiv: 1501.06998 [hep-th]Google Scholar
  111. 111.
    Kordyuk A A. Iron-based superconductors: Magnetism, superconductivity, and electronic structure. Low Temp Phys, 2012, 38: 888–899ADSGoogle Scholar
  112. 112.
    Chubukov A. Pairing mechanism in Fe-based superconductors. Annu Rev Condens Matter Phys, 2012, 3: 57–92Google Scholar
  113. 113.
    Yuan H Q, Grosche F M, Deppe M, et al. Observation of two distinct superconducting phases in CeCu2Si2. Science, 2003, 302: 2104–2107ADSGoogle Scholar
  114. 114.
    Fulde P, Ferrell R A. Superconductivity in a strong spin-exchange field. Phys Rev A, 1964, 135: 550–563ADSGoogle Scholar
  115. 115.
    Larkin A I, Ovchinnikov Y N. Nonuniform state of superconductors. Zh Eksp Teor Fiz, 1964, 47: 1136–1146. [Sov Phys JETP, 1965, 20: 762]Google Scholar
  116. 116.
    Donos A, Gauntlett J P, Pantelidou C. Competing p-wave orders. Class Quant Grav, 2014, 31: 055007. [arXiv: 1310.5741 [hep-th]]ADSMathSciNetGoogle Scholar
  117. 117.
    Hirschfeld P J, Putikka W O, Scalapino D J. Microwave conductivity of d-wave superconductors. Phys Rev Lett, 1993, 71: 3705ADSGoogle Scholar
  118. 118.
    Benini F, Herzog C P, Yarom A. Holographic Fermi arcs and a d-wave gap. Phys Lett B, 2011, 701: 626–629. [arXiv: 1006.0731 [hep-th]]ADSGoogle Scholar
  119. 119.
    Chen J W, Liu Y S, Maity D. d + id holographic superconductors. J High Energy Phys 2011, 1105: 032. [arXiv: 1103.1714 [hep-th]]ADSGoogle Scholar
  120. 120.
    Kim K -Y, Taylor M. Holographic d-wave superconductors. J High Energy Phys, 2013, 1308: 112. [arXiv: 1304.6729 [hep-th]]ADSGoogle Scholar
  121. 121.
    Norman M R. The challenge of unconventional superconductivity. Science, 2011, 332: 196–200ADSGoogle Scholar
  122. 122.
    Berg E, Fradkin E, Kivelson S A, et al. Striped superconductors: How spin, charge and superconducting orders intertwine in the cuprates. New J Phys, 2009, 11: 115004Google Scholar
  123. 123.
    Zaanen J. A Modern, but way too short history of the theory of superconductivity at a high temperature. [arXiv: 1012.5461 [condmat. supr-con]]Google Scholar
  124. 124.
    Cai R G, Li L, Li L F, et al. Competition and coexistence of order parameters in holographic multi-band superconductors. J High Energy Phys, 2013, 1309: 074. [arXiv: 1307.2768 [hep-th]]ADSMathSciNetGoogle Scholar
  125. 125.
    Nie Z Y, Cai R G, Gao X, et al. Competition between the s-wave and p-wave superconductivity phases in a holographic model. J High Energy Phys, 2013, 1311: 087. [arXiv: 1309.2204 [hep-th]]ADSGoogle Scholar
  126. 126.
    Amado I, Arean D, Jimenez-Alba A, et al. Holographic s+p superconductors. Phys Rev D, 2014, 89: 026009. [arXiv: 1309.5086 [hepth]]ADSGoogle Scholar
  127. 127.
    Li L F, Cai R G, Li L, et al. Competition between s-wave order and d-wave order in holographic superconductors. J High Energy Phys, 2014, 1408: 164. [arXiv: 1405.0382 [hep-th]]ADSGoogle Scholar
  128. 128.
    Nishida M. Phase diagram of a holographic superconductor model with s-wave and d-wave. J High Energy Phys, 2014, 1409: 154. [arXiv: 1403.6070 [hep-th]]ADSGoogle Scholar
  129. 129.
    Basu P, He J, Mukherjee A, et al. Competing holographic orders. J High Energy Phys, 2010, 1010: 092. [arXiv: 1007.3480 [hep-th]]ADSGoogle Scholar
  130. 130.
    Musso D. Competition/Enhancement of two probe order parameters in the unbalanced holographic superconductor. J High Energy Phys, 2013, 1306: 083. [arXiv: 1302.7205 [hep-th]]ADSGoogle Scholar
  131. 131.
    Liu Y, Schalm K, Sun Y W, et al. Bose-Fermi competition in holographic metals. J High Energy Phys, 2013, 1310: 064. [arXiv: 1307.4572 [hep-th]]ADSGoogle Scholar
  132. 132.
    Amoretti A, Braggio A, Maggiore N, et al. Coexistence of two vector order parameters: a holographic model for ferromagnetic superconductivity. J High Energy Phys, 2014, 1401: 054. [arXiv: 1309.5093 [hep-th]]ADSGoogle Scholar
  133. 133.
    Wen W Y, Wu M S, Wu S Y. A holographic model of two-band superconductor. Phys Rev D, 2014, 89: 066005. [arXiv: 1309.0488 [hep-th]]ADSGoogle Scholar
  134. 134.
    Donos A, Gauntlett J P, Sonner J, et al. Competing orders in Mtheory: Superfluids, stripes and metamagnetism. J High Energy Phys, 2013, 1303: 108. [arXiv: 1212.0871 [hep-th]]ADSMathSciNetGoogle Scholar
  135. 135.
    Silaev M, Babaev E. Microscopic derivation of two-component Ginzburg-Landau model and conditions of its applicability in twoband systems. Phys Rev B, 2012, 85: 134514. [arXiv: 1110.1593 [cond-mat]]ADSGoogle Scholar
  136. 136.
    Shanenko A A, Milošević M V, Peeters F M, et al. Extended Ginzburg-Landau formalism for two-band superconductors. Phys Rev Lett, 2011, 106: 047005. [arXiv:1101.0971 [cond-mat.suprcon]]ADSGoogle Scholar
  137. 137.
    Vagov A, Shanenko A A, Milošević M V, et al. Two-band superconductors: Extended Ginzburg-Landau formalism by a systematic expansion in small deviation from the critical temperature. Phys Rev B, 2012, 86: 144514. [arXiv: 1207.6297 [cond-mat.supr-con]]ADSGoogle Scholar
  138. 138.
    Carlstrom J, Babaev E, Speight M. Type-1.5 superconductivity in multiband systems: Effects of interband couplings. Phys Rev B, 2011, 83: 174509. [arXiv: 1009.2196 [cond-mat.supr-con]]ADSGoogle Scholar
  139. 139.
    Buzea C, Yamashita T. Review of superconducting properties of MgB2. Supercond Sci Technol, 2001, 14: R115–R146. [arXiv: condmat/0108265 [cond-mat.supr-con]]ADSGoogle Scholar
  140. 140.
    Hirschfeld P J, Korshunov M M, Mazin I I. Gap symmetry and structure of Fe-based superconductors. Rep Prog Phys, 2011, 74: 124508. [arXiv: 1106.3712 [cond-mat.supr-con]]ADSGoogle Scholar
  141. 141.
    Johnston David C. The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv Phys, 2010, 59: 803–1061. [arXiv: 1005.4392 [cond-mat.supr-con]]ADSGoogle Scholar
  142. 142.
    Stewart G R. Superconductivity in iron compounds. Rev Mod Phys, 2011, 83: 1589–1652. [arXiv: 1106.1618 [cond-mat.supr-con]]ADSGoogle Scholar
  143. 143.
    Nie Z Y, Cai R G, Gao X, et al. Phase transitions in a holographic s+p model with backreaction. [arXiv: 1501.00004 [hep-th]]Google Scholar
  144. 144.
    Goswami P, Roy B. Axionic superconductivity in three dimensional doped narrow gap semiconductors. Phys Rev B, 2014, 90: 041301(R). [arXiv: 1307.3240 [cond-mat.supr-con]]ADSGoogle Scholar
  145. 145.
    Lonzarich G G, Saxena S S, Agarwal P, et al. Superconductivity on the border of itinerant-electron ferromagnetism in UGe2. Nature, 2000, 406: 587–592ADSGoogle Scholar
  146. 146.
    Aoki D, Huxley A, Ressouche E, et al. Coexistence of superconductivity and ferromagnetism in URhGe. Nature, 2001, 413: 613–616ADSGoogle Scholar
  147. 147.
    Huy N T, Gasparini A, de Nijs D E, et al. Superconductivity on the border of weak itinerant ferromagnetism in UCoGe. Phys Rev Lett, 2007, 99: 067006ADSGoogle Scholar
  148. 148.
    Pfleiderer C, Uhlarz M, Hayden S M, et al. Coexistence of superconductivity and ferromagnetism in the d-band metal ZrZn2. Nature, 2001, 412: 58–61ADSGoogle Scholar
  149. 149.
    Uzunov D I. Theory of ferromagnetic unconventional superconductors with spin-triplet electron pairing. [arXiv: 1204.1007v2 [condmat]]Google Scholar
  150. 150.
    Machida K, Ohmi T. Theory of ferromagnetic superconductivity. Phys Rev Lett, 2001, 86: 850. [arXiv: 0008245 [cond-mat]]ADSGoogle Scholar
  151. 151.
    Andriy Nevidomskyy H. Coexistence of ferromagnetism and superconductivity close to a quantum phase transition: The heisenbergto ising-type crossover. Phys Rev Lett, 2005, 94: 097003. [arXiv: 0412247 [cond-mat]]Google Scholar
  152. 152.
    Iqbal N, Liu H, Mezei M, et al. Quantum phase transitions in holographic models of magnetism and superconductors. Phys Rev D, 2010, 82: 045002. [arXiv: 1003.0010 [hep-th]]ADSGoogle Scholar
  153. 153.
    Cai R-G, Yang R-Q. Paramagnetism-Ferromagnetism phase transition in a dyonic black hole. Phys Rev D, 2014, 90: 081901. [arXiv: 1404.2856 [hep-th]]ADSGoogle Scholar
  154. 154.
    Cai R G, Yang R Q. Coexistence and competition of ferromagnetism and p-wave superconductivity in holographic model. Phys Rev D, 2015, 91: 026001. [arXiv: 1410.5080 [hep-th]]ADSGoogle Scholar
  155. 155.
    Cai R G, Yang R Q, Kusmartsev F V. A holographic model for antiferromagnetic quantum phase transition induced by magnetic field. [arXiv: 1501.04481 [hep-th]]Google Scholar
  156. 156.
    Cai R-G, Zhang Y-Z. Black plane solutions in four-dimensional space-times. Phys Rev D, 1996, 54: 4891–4898. [arXiv: 9609065 [gr-qc]]ADSMathSciNetGoogle Scholar
  157. 157.
    Anninos D, Hartnoll S A, Iqbal N. Holography and the Coleman-Mermin-Wagner theorem. Phys Rev D, 2010, 82: 066008. [arXiv: 1005.1973 [hep-th]]ADSGoogle Scholar
  158. 158.
    Herzog C P, Kovtun P K, Son D T. Holographic model of superfluidity. Phys Rev D, 2009, 79: 066002. [arXiv: 0809.4870 [hep-th]]ADSMathSciNetGoogle Scholar
  159. 159.
    Brihaye Y, Hartmann B. Holographic superfluid/fluid/insulator phase transitions in 2+1 dimensions. Phys Rev D, 2011, 83: 126008. [arXiv: 1101.5708 [hep-th]]ADSGoogle Scholar
  160. 160.
    Arean D, Bertolini M, Krishnan C, et al. Type IIB holographic superfluid flows. J High Energy Phys, 2011, 1103: 008. [arXiv: 1010.5777 [hep-th]]ADSMathSciNetGoogle Scholar
  161. 161.
    Wu Y B, Lu J W, Zhang W X, et al. Holographic p-wave superfluid. Phys Rev D, 2014, 90: 126006. [arXiv: 1410.5243 [hep-th]]ADSGoogle Scholar
  162. 162.
    Domenech O, Montull M, Pomarol A, et al. Emergent gauge fields in holographic superconductors. J High Energy Phys, 2010, 1008: 033. [arXiv: 1005.1776 [hep-th]]ADSGoogle Scholar
  163. 163.
    Gao X, Kaminski M, Zeng H B, et al. Non-equilibrium field dynamics of an honest holographic superconductor. J High Energy Phys, 2012, 1211: 112. [arXiv: 1204.3103 [hep-th]]ADSGoogle Scholar
  164. 164.
    Flauger R, Pajer E, Papanikolaou S. A striped holographic superconductor. Phys Rev D, 2011, 83: 064009. [arXiv: 1010.1775 [hep-th]]ADSGoogle Scholar
  165. 165.
    Horowitz G T, Santos J E. General relativity and the cuprates. [arXiv: 1302.6586 [hep-th]]Google Scholar
  166. 166.
    DiasÓ J C, Horowitz G T, Iqbal N, et al. Vortices in holographic superfluids and superconductors as conformal defects. J High Energy Phys, 2014, 1404: 096. [arXiv: 1311.3673 [hep-th]]ADSGoogle Scholar
  167. 167.
    Zeng H B, Wu J P. Holographic superconductors from the massive gravity. Phys Rev D, 2014, 90: 046001. [arXiv: 1404.5321 [hep-th]]ADSGoogle Scholar
  168. 168.
    Koga J I, Maeda K, Tomoda K. Holographic superconductor model in a spatially anisotropic background. Phys Rev D, 2014, 89: 104024. [arXiv: 1401.6501 [hep-th]]ADSGoogle Scholar
  169. 169.
    Ling Y, Liu P, Niu C, et al. Holographic superconductor on Q-lattice. [arXiv: 1410.6761 [hep-th]]Google Scholar
  170. 170.
    Arean D, Farahi A, Pando Zayas L A, et al. Holographic superconductor with disorder. Phys Rev D, 2014, 89: 106003. [arXiv: 1308.1920 [hep-th]]ADSGoogle Scholar
  171. 171.
    Erdmenger J, Herwerth B, Klug S, et al. S-Wave superconductivity in anisotropic holographic insulators. [arXiv: 1501.07615 [hep-th]]Google Scholar
  172. 172.
    Kim K Y, Kim K K, Park M. A simple holographic superconductor with momentum relaxation. [arXiv: 1501.00446 [hep-th]]Google Scholar
  173. 173.
    Horowitz G T, Santos J E, Way B. A holographic josephson junction. Phys Rev Lett, 2011, 106: 221601. [arXiv: 1101.3326 [hep-th]]ADSGoogle Scholar
  174. 174.
    Wang Y Q, Liu Y X, Zhao Z H. Holographic josephson junction in 3+1 dimensions. [arXiv: 1104.4303 [hep-th]]Google Scholar
  175. 175.
    Siani M. On inhomogeneous holographic superconductors. [arXiv: 1104.4463 [hep-th]]Google Scholar
  176. 176.
    Wang Y Q, Liu Y X, Zhao Z H. Holographic p-wave josephson junction. [arXiv: 1109.4426 [hep-th]]Google Scholar
  177. 177.
    Wang Y Q, Liu Y X, Cai R G, et al. Holographic SIS josephson junction. J High Energy Phys, 2012, 1209: 058. [arXiv: 1205.4406 [hep-th]]ADSGoogle Scholar
  178. 178.
    Rozali M, Vincart-Emard A. Chiral edge currents in a holographic josephson junction. J High Energy Phys, 2014, 1401: 003. [arXiv: 1310.4510 [hep-th]]ADSGoogle Scholar
  179. 179.
    Cai R G, Wang Y Q, Zhang H Q. A holographic model of SQUID. J High Energy Phys, 2014, 1401: 039. [arXiv: 1308.5088 [hep-th]]ADSGoogle Scholar
  180. 180.
    Takeuchi S. Holographic superconducting quantum interference device. [arXiv: 1309.5641 [hep-th]]Google Scholar
  181. 181.
    Kiritsis E, Niarchos V. Josephson junctions and AdS/CFT networks. J High Energy Phys, 2011, 1107: 112. [Erratum-ibid, 2011, 1110: 095]. [arXiv: 1105.6100 [hep-th]]ADSMathSciNetGoogle Scholar
  182. 182.
    Li H F, Li L, Wang Y Q, et al. Non-relativistic josephson junction from holography. J High Energy Phys, 2014, 1412: 099. [arXiv: 1410.5578 [hep-th]]ADSGoogle Scholar
  183. 183.
    Murata K, Kinoshita S, Tanahashi N. Non-equilibrium condensation process in a holographic superconductor. J High Energy Phys, 2010, 1007: 050. [arXiv: 1005.0633 [hep-th]]ADSGoogle Scholar
  184. 184.
    Bhaseen M J, Gauntlett J P, Simons B D, et al. Holographic superfluids and the dynamics of symmetry breaking. Phys Rev Lett, 2013, 110: 015301. [arXiv: 1207.4194 [hep-th]]ADSGoogle Scholar
  185. 185.
    Sonner J, del} Campo A, Zurek W H. Universal far-from-equilibrium dynamics of a holographic superconductor. [arXiv: 1406.2329 [hepth]Google Scholar
  186. 186.
    Bai X, Lee B H, Li L, et al. Time evolution of entanglement entropy in quenched holographic superconductors. [arXiv: 1412.5500 [hepth]]Google Scholar
  187. 187.
    Adams A, Chesler P M, Liu H. Holographic vortex liquids and superfluid turbulence. Science, 2013, 341: 368–372. [arXiv: 1212.0281 [hep-th]]ADSMathSciNetGoogle Scholar
  188. 188.
    Gao X, Garcia-Garcia A M, Zeng H B, et al. Normal modes and time evolution of a holographic superconductor after a quantum quench. J High Energy Phys 2014, 1406: 019. [arXiv: 1212.1049 [hep-th]]ADSGoogle Scholar
  189. 189.
    Li W-J, Tian Y, Zhang H-B. Periodically driven holographic superconductor. J High Energy Phys, 2013, 1307: 030. [arXiv: 1305.1600 [hep-th]]ADSGoogle Scholar
  190. 190.
    Garca-Garca A M, Zeng H B, Zhang H Q. A thermal quench induces spatial inhomogeneities in a holographic superconductor. J High Energy Phys, 2014, 1407: 096. [arXiv: 1308.5398 [hep-th]]ADSGoogle Scholar
  191. 191.
    Chesler P M, Garcia-Garcia A M, Liu H. Far-from-equilibrium coarsening, defect formation, and holography. [arXiv: 1407.1862 [hep-th]]Google Scholar
  192. 192.
    Du Y, Niu C, Tian Y, et al. Holographic vortex pair annihilation in superfluid turbulence. [arXiv: 1412.8417 [hep-th]]Google Scholar
  193. 193.
    Herzog C P. An analytic holographic superconductor. Phys Rev D, 2010, 81: 126009. [arXiv: 1003.3278 [hep-th]]ADSMathSciNetGoogle Scholar
  194. 194.
    Siopsis G, Therrien J. Analytic calculation of properties of holographic superconductors. J High Enegry Phys, 2010, 1005: 013. [arXiv: 1003.4275 [hep-th]]ADSGoogle Scholar
  195. 195.
    Zeng H B, Gao X, Jiang Y, et al. Analytical computation of critical exponents in several holographic superconductors. J High Energy Phys, 2011, 1105: 002. [arXiv: 1012.5564 [hep-th]]ADSGoogle Scholar
  196. 196.
    Cai R G, Li H F, Zhang H Q. Analytical studies on holographic insulator/superconductor phase transitions. Phys Rev D, 2011, 83: 126007. [arXiv: 1103.5568 [hep-th]]ADSGoogle Scholar
  197. 197.
    Momeni D, Nakano E, Setare M R, et al. Analytical study of critical magnetic field in a holographic superconductor. Int J Mod Phys A, 2013, 28: 1350024. [arXiv: 1108.4340 [hep-th]]ADSGoogle Scholar
  198. 198.
    Zeng X X, Liu X M, Liu WB. Analytic treatment on stimulated holographic superconductors. Int J Mod Phys A, 2012, 27: 1250010.ADSGoogle Scholar
  199. 199.
    Pan Q, Jing J, Wang B, et al. Analytical study on holographic superconductors with backreactions. J High Energy Phys, 2012, 1206: 087. [arXiv: 1205.3543 [hep-th]]ADSGoogle Scholar
  200. 200.
    Gangopadhyay S, Roychowdhury D. Analytic study of properties of holographic p-wave superconductors. J High Energy Phys, 2012, 1208: 104. [arXiv: 1207.5605 [hep-th]]ADSGoogle Scholar
  201. 201.
    Huang W H. Analytic study of first-order phase transition in holographic superconductor and superfluid. Int J Mod Phys A, 2013, 28: 1350140. [arXiv: 1307.5614 [hep-th]]ADSGoogle Scholar
  202. 202.
    Banerjee R, Gangopadhyay S, Roychowdhury D, et al. Holographic s-wave condensate with nonlinear electrodynamics: A nontrivial boundary value problem. Phys Rev D, 2013, 87: 104001. [arXiv: 1208.5902 [hep-th]]ADSGoogle Scholar
  203. 203.
    Momeni D, Raza M, Myrzakulov R. Analytical coexistence of s, p, s + p phases of a holographic superconductor. [arXiv:1310.1735 [hepth]]Google Scholar
  204. 204.
    Lu J W, Wu Y B, Qian P, et al. Lifshitz scaling effects on holographic superconductors. Nucl Phys B, 2014, 887: 112–135. [arXiv: 1311.2699 [hep-th]]ADSGoogle Scholar
  205. 205.
    Horowitz G T, Polchinski J. Gauge/Gravity Duality. In: Oriti D, ed. Approaches to Quantum Gravity. Cambridge: Cambridge University Press, 2006. 169–186. [arXiv: 0602037 [gr-qc]]Google Scholar
  206. 206.
    Lee S S. A Non-Fermi Liquid from a Charged Black Hole: A Critical Fermi Ball. Phys Rev D, 2009, 79: 086006. [arXiv: 0809.3402 [hep-th]]ADSGoogle Scholar
  207. 207.
    Liu H, McGreevy J, Vegh D. Non-Fermi liquids from holography. Phys Rev D, 2011, 83: 065029. [arXiv: 0903.2477 [hep-th]]ADSGoogle Scholar
  208. 208.
    Cubrovic M, Zaanen J, Schalm K. String theory, quantum phase transitions and the emergent fermi-liquid. Science, 2009, 325: 439–444. [arXiv: 0904.1993 [hep-th]]ADSMathSciNetGoogle Scholar
  209. 209.
    Faulkner T, Liu H, McGreevy J, et al. Emergent quantum criticality, Fermi surfaces, and AdS(2). Phys Rev D, 2011, 83: 125002. [arXiv: 0907.2694 [hep-th]]ADSGoogle Scholar
  210. 210.
    Faulkner T, Polchinski J. Semi-holographic fermi liquids. J High Energy Phys, 201, 1106: 012. [arXiv: 1001.5049 [hep-th]]Google Scholar
  211. 211.
    Davis J L, Kraus P, Shah A. Gravity dual of a quantum hall plateau transition. J High Energy Phys, 2008, 0811: 020. [arXiv: 0809.1876 [hep-th]]ADSMathSciNetGoogle Scholar
  212. 212.
    Fujita M, Li W, Ryu S, et al. Fractional quantum hall effect via holography: Chern-simons, edge states, and hierarchy. J High Energy Phys, 2009, 0906: 066. [arXiv: 0901.0924 [hep-th]]ADSMathSciNetGoogle Scholar
  213. 213.
    Bergman O, Jokela N, Lifschytz G, et al. Quantum hall effect in a holographic model. J High Energy Phys, 2010, 1010: 063. [arXiv: 1003.4965 [hep-th]]ADSGoogle Scholar
  214. 214.
    Hartnoll S A, Polchinski J, Silverstein E, et al. Towards strange metallic holography. J High Energy Phys, 2010, 1004: 120. [arXiv: 0912.1061 [hep-th]]ADSGoogle Scholar
  215. 215.
    Faulkner T, Iqbal N, Liu H, et al. From black holes to strange metals. [arXiv: 1003.1728 [hep-th]]Google Scholar
  216. 216.
    Kim B S, Kiritsis E, Panagopoulos C. Holographic quantum criticality and strange metal transport. New J Phys, 2012, 14: 043045. [arXiv: 1012.3464 [cond-mat.str-el]]Google Scholar
  217. 217.
    Davison R A, Schalm K, Zaanen J. Holographic duality and the resistivity of strange metals. Phys Rev B, 2014, 89: 245116. [arXiv: 1311.2451 [hep-th]]ADSGoogle Scholar
  218. 218.
    Hoyos-Badajoz C, Jensen K, Karch A. A holographic fractional topological insulator. Phys Rev D, 2010, 82: 086001. [arXiv: 1007.3253 [hep-th]]ADSGoogle Scholar
  219. 219.
    Ryu S, Takayanagi T. Topological insulators and superconductors from string theory. Phys Rev D, 2010, 82: 086014. [arXiv: 1007.4234 [hep-th]]ADSGoogle Scholar
  220. 220.
    Karch A, Maciejko J, Takayanagi T. Holographic fractional topological insulators in 2+1 and 1+1 dimensions. Phys Rev D, 2010, 82: 126003. [arXiv: 1009.2991 [hep-th]]ADSGoogle Scholar
  221. 221.
    Fujita M, Harrison S, Karch A, et al. Towards a holographic bosehubbard model. [arXiv: 1411.7899 [hep-th]]Google Scholar
  222. 222.
    Polchinski J, Strassler M J. Hard scattering and gauge/string duality. Phys Rev Lett, 2002, 88: 031601. [arXiv: 0109174 [hep-th]]ADSMathSciNetGoogle Scholar
  223. 223.
    Boschi-Filho H, Braga N R F. QCD/string holographic mapping and glueball mass spectrum. Eur Phys J C, 2004, 32: 529–533. [arXiv: 0209080 [hep-th]]ADSGoogle Scholar
  224. 224.
    Erlich J, Katz E, Son D T, et al. QCD and a holographic model of hadrons. Phys Rev Lett, 2005, 95: 261602. [arXiv: 0501128 [hepth]]ADSGoogle Scholar
  225. 225.
    de Teramond G F, Brodsky S J. Hadronic spectrum of a holographic dual of QCD. Phys Rev Lett, 2005, 94: 201601. [arXiv: 0501022 [hep-th]]ADSGoogle Scholar
  226. 226.
    Babington J, Erdmenger J, Evans N J, et al. Chiral symmetry breaking and pions in nonsupersymmetric gauge/gravity duals. Phys Rev D, 2004, 69: 066007. [arXiv: 0306018 [hep-th]]ADSMathSciNetGoogle Scholar
  227. 227.
    Kruczenski M, Mateos D, Myers R C, et al. Towards a holographic dual of large N(c) QCD. J High Energy Phys, 2004, 0405: 041. [arXiv: 0311270 [hep-th]]ADSGoogle Scholar
  228. 228.
    Gubser S S. Drag force in AdS/CFT. Phys Rev D, 2006, 74: 126005. [arXiv: 0605182 [hep-th]]ADSMathSciNetGoogle Scholar
  229. 229.
    Shuryak E, Sin S-J, Zahed I. A gravity dual of RHIC collisions. J Korean Phys Soc, 2007, 50: 384–397. [arXiv: 0511199 [hep-th]]Google Scholar
  230. 230.
    Gursoy U, Kiritsis E, Mazzanti L, et al. Deconfinement and gluon plasma dynamics in improved holographic QCD. Phys Rev Lett, 2008, 101: 181601. [arXiv: 0804.0899 [hep-th]]ADSGoogle Scholar
  231. 231.
    Herzog C P. A holographic prediction of the deconfinement temperature. Phys Rev Lett, 2007, 98: 091601. [arXiv: 0608151 [hep-th]]ADSGoogle Scholar
  232. 232.
    Colangelo P, Giannuzzi F, Nicotri S. Holography, heavy-quark free energy, and the QCD phase diagram. Phys Rev D, 2011, 83: 035015. [arXiv: 1008.3116 [hep-ph]]ADSGoogle Scholar
  233. 233.
    Chen H -Y, Hashimoto K, Matsuura S. Towards a holographic model of color-flavor locking phase. J High Energy Phys, 2010, 1002: 104. [arXiv: 0909.1296 [hep-th]]ADSGoogle Scholar
  234. 234.
    Huang M, He S, Yan Q S, et al. Confront holographic QCD with regge trajectories. Eur Phys J C, 2010, 66: 187–196. [arXiv: 0710.0988 [hep-ph]]ADSGoogle Scholar
  235. 235.
    van der Schee W. Gravitational collisions and the quark-gluon plasma. [arXiv: 1407.1849 [hep-th]]Google Scholar
  236. 236.
    Bhattacharyya S, Hubeny V E, Minwalla S, et al. Nonlinear fluid dynamics from gravity. J High Energy Phys, 2008, 0802: 045. [arXiv: 0712.2456 [hep-th]]ADSMathSciNetGoogle Scholar
  237. 237.
    Rangamani M. Gravity and hydrodynamics: Lectures on the fluidgravity correspondence. Class Quant Grav, 2009, 26: 224003. [arXiv: 0905.4352 [hep-th]]ADSMathSciNetGoogle Scholar
  238. 238.
    Bredberg I, Keeler C, Lysov V, et al. From navier-stokes to einstein. J High Energy Phys, 2012, 1207: 146. [arXiv: 1101.2451 [hep-th]]ADSMathSciNetGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Crete Center for Theoretical Physics, Department of PhysicsUniversity of CreteHeraklionGreece
  3. 3.State Key Laboratory of Space Weather, Center for Space Science and Applied ResearchChinese Academy of SciencesBeijingChina

Personalised recommendations