Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Determination of the 25Mg(p, γ)26Al resonance strength at E c.m.=58 keV via shell model calculation

  • 79 Accesses

  • 9 Citations

Abstract

The observation of 26Al is an useful tool for γ-ray astronomy and in studies of galactic chemical evolution. The most likely mechanism for 26A1 nucleosynthesis is in the hydrogen burning MgAl cycle, and the 26A1 production reaction 25Mg(p, γ)26Al at the important temperature range below T = 0.2 GK is still not well known. The spectroscopic factor of 58 keV resonance level in 26A1 is determined with shell model calculation and then used to deduce the resonance strength of the 25Mg(p, γ)26Al reaction. The result provides a reference for the future 25Mg(p, γ)26Al direct measurement at Jinping underground laboratory.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Mahoney W A, Ling J C, Wheaton W A, et al. HEAO 3 discovery of 26Al in the interstellar medium. Astrophys J, 1984, 286: 578–585

  2. 2

    Plüschke S, Diehl R, Schönfelder V, et al. The Comptel 1.809 MeV survey. ESA SP, 2001, 459: 55–58

  3. 3

    Diehl R, Halloin H, Kretschmer K, et al. Radioactive 26Al from massive stars in the Galaxy. Nature, 2006, 439: 45–47

  4. 4

    Gray C M, Compston W. Excess magnesium-26 in the Allende Meteorite. Nature, 1974, 251: 495–497

  5. 5

    Betts R R, Fortune H T, Pullen D J. A study of 26Al by the 25Mg(3He, d) reaction. Nucl Phys A, 1978, 299: 412–428

  6. 6

    Champagne A E, Howard A J, Parker P D. Threshold states in 26Al: (I). Experimental investigations. Nucl Phys A, 1983, 402: 159–178

  7. 7

    Champagne A E, Howard A J, Parker P D. Threshold states in 26Al: (II). Extraction of resonance strengths. Nucl Phys A, 1983, 402: 179–188

  8. 8

    Endt P M, de Wit P, Alderliesten C. The 25Mg(p, γ)26Al and 25Mg(p, p′) resonances for E p = 0.31–1.84 MeV. Nucl Phys A, 1986, 459: 61–76

  9. 9

    Champagne A E, McDonald A B, Wang T F, et al. Threshold states in 26Al revisited. Nucl Phys A, 1986, 451: 498–508

  10. 10

    Endt P E, Rolfs C. Astrophysical aspects of the 25Mg(p, γ)26Al reaction. Nucl Phys A, 1987, 467: 261–272

  11. 11

    Champagne A E, Howard A J, Smith M S, et al. The effect of weak resonances on the 25Mg(p, γ)26Al reaction rate. Nucl Phys A, 1989, 505: 384–396

  12. 12

    Rollefson A A, Wijekumar V, Browne C P, et al. Spectroscopic factors for proton unbound levels in 26Al and their influence on stellar reaction rates. Nucl Phys A, 1990, 507: 413–425

  13. 13

    Iliadis C, Schange T, Rolfs C, et al. Low-energy resonances in 25Mg(p, γ)26Al, 26Mg(p, γ)27Al and 27Al(p, γ)28Si. Nucl Phys A, 1990, 512: 509–530

  14. 14

    Iliadis C, Buchmann L, Endt P M, et al. New stellar reaction rates for 25Mg(p, γ)26Al and 25Al(p, γ)26Si. Phys Rev C, 1996, 53: 475–496

  15. 15

    Powell D C, Iliadis C, Champagne A E, et al. Low-energy resonance strengths for proton capture on Mg and Al nuclei. Nucl Phys A, 1998, 644: 263–276

  16. 16

    Arazi A, Faestermann T, Niello J O, et al. Measurement of 25Mg(p, γ)26Alg resonance strengths via accelerator mass spectrometry. Phys Rev C, 2006, 74: 025802

  17. 17

    Strieder F, Limata B, Formicola A, et al. The 25Mg(p, γ)26Al reaction at low astrophysical energies. Phys Lett B, 2012, 707: 60–65

  18. 18

    Starniero O, Imbriani G, Strieder F, et al. Impact of a revised 25Mg(p, γ)26Al reaction rate on the operation of the Mg-Al cycle. Astrophys J, 2013, 763: 100

  19. 19

    Ledebuhr A G, Harwood L H, Robertson R G H, et al. Test of the isobaric multiplet mass equation from β-delayed proton decay of 24Si. Phys Rev C, 1980, 22: 1723–1728

  20. 20

    Iliadis C. Proton single-particle reduced widths for unbound states. Nucl Phys A, 1997, 618: 166–175

  21. 21

    Ormand W E, Brown B A. Empirical isospin-nonconserving hamiltonians for shell-model calculations. Nucl Phys A, 1989, 491: 1–23

  22. 22

    Brown B A, Rae W D M. MSU-NSCL report, 2007

  23. 23

    Li Z H, Liu W P, Bai X X, et al. The 8Li(d, p)9Li reaction and the astrophysical 8Li(n, γ)9Li reaction rate. Phys Rev C, 2005, 71: 052801R

  24. 24

    Guo B, Li Z H, Liu W P, et al. The 8Li(d, p)9Li reaction and astrophysical 8B(p, γ)9C reacton rate. Nucl Phys A, 2005, 761: 162–172

  25. 25

    Li Z H, Guo B, Yan S Q, et al. 13N(d, n)14O reaction and the astrophysical 13N(p, γ)14O reaction rate. Phys Rev C, 2006, 74: 035801

  26. 26

    Guo B, Li Z H, Bai X X, et al. Determination of the astrophysical 26Si(p, γ)27P reaction rate from the asymptotic normalization coefficients of 27Mg→26Mg+n. Phys Rev C, 2006, 73: 048801

  27. 27

    Guo B, Li Z H, Liu W P, et al. Determination of astrophysical 11C(p, γ)12N reaction rate from the asymptotic normalization coefficients of 12B→11B+n. J Phys G-Nucl Part Phys, 2007, 34: 103–114

  28. 28

    Li Z H, Su J, Guo B, et al. Determination of the 12C(p, γ)13N reaction rates from the 12C(7Li, 6He)13N reaction. Sci China-Phys Mech Astron, 2010, 53: 658–663

Download references

Author information

Correspondence to ZhiHong Li.

Additional information

Contributed by LIU WeiPing (Associate editor)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Su, J., Li, Y. et al. Determination of the 25Mg(p, γ)26Al resonance strength at E c.m.=58 keV via shell model calculation. Sci. China Phys. Mech. Astron. 58, 82002 (2015). https://doi.org/10.1007/s11433-015-5663-x

Download citation

Keywords

  • γ-ray astronomy
  • astrophysical reaction rate
  • spectroscopic factor
  • resonance strength