Skip to main content
Log in

Narrowband polarization entangled paired photons with controllable temporal length

  • Invited Review
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Quantum networks strongly depend on the efficient interactions between flying photonic quantum bits and local long-lived atomic matter nodes. To achieve the efficient quantum interfaces between polarization-encoding photons and spin-encoding atoms, polarization-entangled paired photons with a bandwidth narrower than the natural linewidth of the atoms are highly required. In this paper, we review the generation of subnatural-linewidth polarization-entangled paired photons through spontaneous four-wave mixing with cold atoms, which is very suitable for the application of quantum networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bouwmeester D, Ekert A, Zeilinger A, et al. The Physics of Quantum Information. Berlin: Springer-Verlag, 2000

    Book  MATH  Google Scholar 

  2. Braunstein S L, van Loock P. Quantum information with continuous variables. Rev Mod Phys, 2005, 77: 513–577

    Article  MATH  ADS  Google Scholar 

  3. Kimble H J. The quantum internet. Nature, 2008, 453: 1023–1030

    Article  ADS  Google Scholar 

  4. D’ Angelo M, Shih Y H. Quantum imaging. Laser Phys Lett, 2005, 2: 567–596

    Article  ADS  Google Scholar 

  5. Migdall A, Datla R, Sergienko A V, et al. Measuring absolute infrared spectral radiance with correlated visible photons: Technique verification and measurement uncertainty. Appl Opt, 1998, 37: 3455–3463

    Article  ADS  Google Scholar 

  6. Kocher C A, Commins E D. Polarization correlation of photons emitted in an atomic cascade. Phys Rev Lett, 1967, 18: 575–577

    Article  ADS  Google Scholar 

  7. Aspect A, Grangier P, Roger G, et al. Experimental tests of realistic local theories via Bell’s theorem. Phys Rev Lett, 1981, 47: 460–463

    Article  ADS  Google Scholar 

  8. Clauser J F, Horne M A, Shimony A, et al. Proposed experiment to test local hidden-variable theories. Phys Rev Lett, 1969, 23: 880–884

    Article  ADS  Google Scholar 

  9. Freedman S, Clauser J. Experimental test of local hidden-variable theories. Phys Rev Lett, 1972, 28: 938–941

    Article  ADS  Google Scholar 

  10. Aspect A, Dalibard J, Roger G, et al. Experimental test of Bell’s inequalities using time-varying analyzers. Phys Rev Lett, 1982, 49: 1804–1807

    Article  MathSciNet  ADS  Google Scholar 

  11. Chaneliere T, Matsukevich D N, Jenkins S D, et al. Quantum telecommunication based on atomic cascade transitions. Phys Rev Lett, 2006, 96: 093604–093607

    Article  ADS  Google Scholar 

  12. Harris S E, Oshman M K, Byer R L, et al. Observation of tunable optical parametric fluorescence. Phys Rev Lett, 1967, 18: 732–734

    Article  ADS  Google Scholar 

  13. Burnham D, Weinberg D. Observation of simultaneity in parametric production of optical photon pairs. Phys Rev Lett, 1970, 25: 84–87

    Article  ADS  Google Scholar 

  14. Rubin M H, Klyshko D N, Shih Y H, et al. Theory of two-photon entanglement in type-II optical parametric down-conversion. Phys Rev A, 1994, 50: 5122–5133

    Article  ADS  Google Scholar 

  15. Shih Y H. Entangled biphoton source: Property and preparation. Rep Prog Phys, 2003, 66: 1009–1044

    Article  ADS  Google Scholar 

  16. Kwiat P G, Mattle K, Weinfurter H, et al. New high-intensity source of polarization-entangled photon pairs. Phys Rev Lett, 1995, 75: 4337–4340

    Article  ADS  Google Scholar 

  17. Brunner N, Cavalcanti D, Pironio S, et al. Bellnonlocality. Rev Mod Phys, 2014, 86: 419–478

    Article  ADS  Google Scholar 

  18. Pan J W, Chen Z B, Lu C Y, et al. Multi-photon entanglement and interferometry. Rev Mod Phys, 2012, 84: 777–838

    Article  ADS  Google Scholar 

  19. Sangouard N, Simon C, Riedmatten H D, et al. Quantum repeaters based on atomic ensembles and linear optics. Rev Mod Phys, 2011, 83: 33–80

    Article  ADS  Google Scholar 

  20. Halder M, Tanzilli S, de Riedmatten H, et al. Photon-bunching measurement after two 25-km-long optical fibers. Phys Rev A, 2005, 71: 042335

    Article  ADS  Google Scholar 

  21. Halder M, Beveratos A, Thew R T, et al. High coherence photon pair source for quantum communication. New J Phys, 2008, 10: 023027

    Article  Google Scholar 

  22. Halder M, Beveratos A, Gisin N, et al. Entangling independent photons by time measurement. Nature, 2007, 3: 692–695

    Google Scholar 

  23. Wang H, Horikiri T, Kobayashi T, et al. Polarization-entangled modelocked photons from cavity-enhanced spontaneous parametric downconversion. Phys Rev A, 2004, 70: 043804

    Article  ADS  Google Scholar 

  24. Ou Z Y, Lu Y J. Cavity enhanced spontaneous parametric downconversion for the prolongation of correlation time between conjugate photons. Phys Rev Lett, 1999, 83: 2556–2559

    Article  ADS  Google Scholar 

  25. Bao X H, Qian Y, Yang J, et al. Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories. Phys Rev Lett, 2008, 101: 190501

    Article  ADS  Google Scholar 

  26. Wang F Y, Shi B S, Guo G C, et al. Observation of time correlation function of multimode two-photon pairs on a rubidium D2 line. Opt Lett, 2008, 33: 2191–2193

    Article  ADS  Google Scholar 

  27. Duan LM, Lukin MD, Cirac J I, et al. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 2001, 414: 413–418

    Article  ADS  Google Scholar 

  28. van der Wal C H, Eisaman M D, Andre A, et al. Atomic memory for correlated photon states. Science, 2003, 301: 196–200

    Article  ADS  Google Scholar 

  29. Kuzmich A, Bowen WP, Boozer A D, et al. Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature, 2003, 423: 731–734

    Article  ADS  Google Scholar 

  30. Chen S, Chen Y A, Zhao B, et al. Demonstration of a stable atomphoton entanglement source for quantum repeaters. Phys Rev Lett, 2007, 99: 180505

    Article  ADS  Google Scholar 

  31. Matsukevich D N, Kuzmich A. Quantum state transfer between matter and light. Science, 2004, 306: 663–666

    Article  ADS  Google Scholar 

  32. Yuan Z S, Chen Y A, Zhao B, et al. Experimental demonstration of a BDCZ quantum repeater node. Nature, 2008, 454: 1098–1101

    Article  ADS  Google Scholar 

  33. Balic V, Braje D A, Kolchin P, et al. Generation of paired photons with controllable waveforms. Phys Rev Lett, 2005, 94: 183601

    Article  ADS  Google Scholar 

  34. Kolchin P, Du S, Belthangady C, et al. Generation of narrow bandwidth paired photons: Use of a single driving laser. Phys Rev Lett, 2006, 97: 113602

    Article  ADS  Google Scholar 

  35. Du S, Wen J, Rubin M H, et al. Four-wave mixing and biphoton generation in a two-level system. Phys Rev Lett, 2007, 98: 053601

    Article  ADS  Google Scholar 

  36. Du S, Kolchin P, Belthangady C, et al. Subnatural Linewidth Biphotons with Controllable Temporal Length. Phys Rev Lett, 2008, 100: 183603

    Article  ADS  Google Scholar 

  37. Lu X S, Chen Q F, Shi B S, et al. Generation of a non-classical correlated photon pair via spontaneous four-wave mixing in a cold atomic ensemble. Chin Phys Lett, 2009, 26: 064204

    Article  ADS  Google Scholar 

  38. Ding D S, Zhou Z Y, Shi B S, et al. Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment. Opt Express, 2012, 20: 11433–11444

    Article  ADS  Google Scholar 

  39. Chen P, Zhou S Y, Xu Z, et al. Narrowband biphoton generation with four-wave mixing in a far-detuning three-level system. Chin Phys Lett, 2011, 28: 074214

    Article  MathSciNet  ADS  Google Scholar 

  40. Cho Y, Park K, Lee J C, et al. Generation of nonclassical narrowband photon pairs from a cold Rubidium cloud. J Korean Phys Soc, 2013, 63: 943–950

    Article  Google Scholar 

  41. Liao K, Yan H, He J, et al. Experimental generation of narrow-band paired photons: From damped Rabi oscillation to group delay. Chin Phys Lett, 2014, 31: 034205

    Article  ADS  Google Scholar 

  42. Zhang S, Chen J F, Liu C, et al. Optical precursor of a single photon. Phys Rev Lett, 2011, 106: 243602

    Article  ADS  Google Scholar 

  43. Zhang S, Liu C, Zhou S, et al. Coherent control of single-photon absorption and reemission in a two-level atomic ensemble. Phys Rev Lett, 2012, 109: 263601

    Article  ADS  Google Scholar 

  44. Liu C, Sun Y, Zhao L, et al. Efficiently loading a single photon into a single-sided Fabry-Perot cavity. Phys Rev Lett, 2014, 113: 133601

    Article  ADS  Google Scholar 

  45. Yan H, Liao K, Deng Z, et al. Experimental observation of simultaneous wave and particle behaviors in a narrowband single photon’s wave packet. arXiv: 1412. 1549

  46. Srivathsan B, Gulati G K, Cere A, et al. Reversing the temporal envelope of a heralded single photon using a cavity. Phys Rev Lett, 2014, 113: 163601

    Article  ADS  Google Scholar 

  47. Ding D S, Zhou Z Y, Shi B S, et al. Single-photon-level quantum image memory based on cold atomic ensembles. Nat Commun, 2013, 4: 3527

    Google Scholar 

  48. Chen J F, Du S. Narrowband photon pair generation and waveform reshaping. Front Phys, 2012, 7: 494–593

    Article  Google Scholar 

  49. Chen Y C, Lin C W, Yu I A, et al. Role of degenerate Zeeman levels in electromagnetically induced transparency. Phys Rev A, 2000, 61: 053805

    Article  ADS  Google Scholar 

  50. Yan H, Zhang S C, Chen J F, et al. Generation of narrow-band hyperentangled nondegenerate paired photons. Phys Rev Lett, 2011, 106: 033601

    Article  ADS  Google Scholar 

  51. Liao K, Yan H, He J, et al. Subnatural-linewidth polarization-entangled photon pairs with controllable temporal length. Phys Rev Lett, 2014, 112: 243602

    Article  ADS  Google Scholar 

  52. Du S W, Wen J M, Rubin M H, et al. Narrowband biphoton generation near atomic resonance. J Opt Soc Am B, 2008, 25: C98–C108

    Article  Google Scholar 

  53. Zhao L, Guo X, Liu C, et al. Photon pairs with coherence time exceeding one microsecond. Optica, 2014, 1: 84–88

    Article  Google Scholar 

  54. Du S, Oh E, Wen J, et al. Four-wave mixing in three-level systems: Interference and entanglement. Phys Rev A, 2007, 76: 013803

    Article  ADS  Google Scholar 

  55. Liu C, Chen J F, Zhang S, et al. Two-photon interferences with degenerate and nondegenerate paired photons. Phys Rev A, 2012, 85: 021803

    Article  ADS  Google Scholar 

  56. Chen P, Shu C, Guo X, et al. Measuring the biphoton temporal wave function with polarization-dependent and time-resolved two-photon interference. Phys Rev Lett, 2015, 114: 010401

    Article  ADS  Google Scholar 

  57. Yan H, Zhu S L. Efficient generation of hyperentangled photon pairs with controllable waveforms from cold atoms. J Opt Soc Am B, 2013, 30: 362–365

    Article  ADS  Google Scholar 

  58. Kolchin P, Belthangady C, Du S, et al. Electro-optic modulation of single photons. Phys Rev Lett, 2008, 101: 103601

    Article  ADS  Google Scholar 

  59. Chen J F, Zhang S, Yan H, et al. Shaping biphoton temporal waveforms with modulated classical fields. Phys Rev Lett, 2010, 104: 183604

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Yan or JieFei Chen.

Additional information

Recommended by ZHANG Jing (Associate Editor)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Chen, J. Narrowband polarization entangled paired photons with controllable temporal length. Sci. China Phys. Mech. Astron. 58, 1–10 (2015). https://doi.org/10.1007/s11433-015-5654-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-015-5654-y

Keywords

Navigation