Skip to main content
Log in

Boundary element method for calculation of elastic wave transmission in two-dimensional phononic crystals

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

A boundary element method (BEM) is presented to compute the transmission spectra of two-dimensional (2-D) phononic crystals of a square lattice which are finite along the x-direction and infinite along the y-direction. The cross sections of the scatterers may be circular or square. For a periodic cell, the boundary integral equations of the matrix and the scatterers are formulated. Substituting the periodic boundary conditions and the interface continuity conditions, a linear equation set is formed, from which the elastic wave transmission can be obtained. From the transmission spectra, the band gaps can be identified, which are compared with the band structures of the corresponding infinite systems. It is shown that generally the transmission spectra completely correspond to the band structures. In addition, the accuracy and the efficiency of the boundary element method are analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Soukoulis, Photonic Band Gaps and Localization (Plenum, New York, 1993), p. 106.

    Book  Google Scholar 

  2. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).

    Article  ADS  Google Scholar 

  3. P. Sheng, Scattering and Localization of Classical Waves in Random Media (World Scientific, Singapore, 1990), p. 130.

    Google Scholar 

  4. F. Cervera, L. Sanchis, J. V. Sanchez-Perez, R. Martínez-Sala, C. Rubio, F. Meseguer, C. López, D. Caballero, and J. Sánchez-Dehesa, Phys. Rev. Lett. 88, 023902 (2001).

    Article  ADS  Google Scholar 

  5. J. G. Hu, and W. Xu, Sci. China-Phys. Mech. Astron. 57, 1013 (2014).

    Article  ADS  Google Scholar 

  6. T. T. Wu, C. H. Hsu, and J. H. Sun, Appl. Phys. Lett. 89, 171912 (2006).

    Article  ADS  Google Scholar 

  7. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, Phys. Rev. Lett. 71, 2022 (1993).

    Article  ADS  Google Scholar 

  8. M. S. Kushwaha, and B. Djafari-Rouhani, J. Appl. Phys. 84, 4677 (1998).

    Article  ADS  Google Scholar 

  9. X. Z. Zhou, Y. S. Wang, and C. Zhang, J. Appl. Phys. 106, 014903 (2009).

    Article  ADS  Google Scholar 

  10. Y. J. Cao, Z. L. Hou, and Y. Y. Liu, Phys. Lett. A 327, 247 (2004).

    Article  ADS  Google Scholar 

  11. J. Mei, Z. Y. Liu, and C. Y. Qiu, J. Phys. Condens. Matt. 17, 3735 (2005).

    Article  ADS  Google Scholar 

  12. C. Y. Qiu, Z. Y. Liu, J. Mei, and M. Z. Ke, Solid State Commun. 134, 765 (2005).

    Article  ADS  Google Scholar 

  13. Y. J. Cao, Z. L. Hou, and Y. Y. Liu, Solid State Commun. 132, 539 (2004).

    Article  ADS  Google Scholar 

  14. J. B. Li, Y. S. Wang, and C. Zhang, J. Comput. Acoust. 20, 1250014 (2012).

    Article  MathSciNet  Google Scholar 

  15. Y. F. Wang, and Y. S. Wang, J. Appl. Phys. 114, 043509 (2013).

    Article  ADS  Google Scholar 

  16. Z. Z. Yan, and Y. S. Wang, Sci. China Ser. G-Phys. Mech. Astron. 50, 622 (2007).

    Article  ADS  Google Scholar 

  17. Z. Z. Yan, Y. S. Wang, and C. Zhang, Acta Mech. Solida Sin. 21, 104 (2008).

    Article  Google Scholar 

  18. N. Zhen, F. L. Li, Y. S. Wang, and C. Zhang, Acta Mech. Sin. 28, 1143 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  19. F. L. Li, Y. S. Wang, and C. Zhang, Phys. Script. 84, 055402 (2011).

    Article  ADS  Google Scholar 

  20. F. L. Li, Y. S. Wang, C. Zhang, and G. L. Yu, Eng. Anal. Bound. Elem. 37, 225 (2013).

    Article  MathSciNet  Google Scholar 

  21. F. L. Li, Y. S. Wang, C. Zhang, and G. L. Yu, Wave Motion 50, 525 (2013).

    Article  MathSciNet  Google Scholar 

  22. J. D. Achenbach, and M. Kitahara, J. Acoust Soc. Am. 80, 1209 (1986).

    Article  ADS  Google Scholar 

  23. F. J. Rizzo, D. J. Shippy, and M. Rezayat, Int. J. Numer. Methods Eng. 21, 115 (1985).

    Article  Google Scholar 

  24. F. L. Li, and Y. S. Wang, in AIP Conference Proceedings 2010: 2nd International Symposium on Computational Mechanics (ISCM II-EPMESC XII), Hong Kong, China, 30 November-3 December 2009, pp. 1441–1446.

    Google Scholar 

  25. C. Zhang, and D. Gross, On Wave Propagation in Elastic Solids with Cracks (Computational Mechanics, Southampton, 1998), p. 63.

    MATH  Google Scholar 

  26. J. V. Sánchez-Pérez, D. Caballero, R. Mártinez-Sala, and D. Caballero, Phys. Rev. Lett. 80, 5325 (1998).

    Article  ADS  Google Scholar 

  27. F. L. Hsiao, A. Khelif, H. Moubchir, A. Chouiaa, and C. C. Chen, J. Appl. Phys. 101, 044903 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to FengLian Li or YueSheng Wang.

Additional information

Recommended by YaPu Zhao (Associate Editor)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Wang, Y. & Zhang, C. Boundary element method for calculation of elastic wave transmission in two-dimensional phononic crystals. Sci. China Phys. Mech. Astron. 59, 664602 (2016). https://doi.org/10.1007/s11433-015-0501-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-0501-x

Keywords

Navigation