Skip to main content
Log in

All-optical scheme for detecting the possible Majorana signature based on QD and nanomechanical resonator systems

  • Review
  • Special Topic: Optomechanics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Majorana fermions (MFs) are exotic particles that are their own anti-particles. Currently, the search for MFs occurring as quasiparticle excitations in condensed matter systems has attracted widespread interest, because of their importance in fundamental physics and potential applications in topological quantum computation based on solid-state devices. Motivated by recent experimental progress towards the detection and manipulation of MFs in hybrid semiconductor/superconductor heterostructures, in this review, we present a novel proposal to probe MFs in all-optical domain. We introduce a single quantum dot (QD), a hybrid quantum dot-nanomechanical resonators (QD-NR) system, and a carbon nanotube (CNT) resonator implanted in a single electron spin system with optical pump-probe technology to detect MFs, respectively. With this scheme, a possible Majorana signature is investigated via the probe absorption spectrum and nonlinear optical Kerr effect, and the coupling strength between MFs and the QD or the single electron spin is also determined. In the hybrid QD-NR system, vibration of the NR will enhance the nonlinear optical effect, which makes the MFs more sensitive for detection. In the CNT resonator with a single electron, the single electron spin can be considered as a sensitive probe, and the CNT resonator behaved as a phonon cavity is robust for detecting of MFs. This optical scheme will provide another method for the detection MFs and will open the door for new applications ranging from robust manipulation of MFs to quantum information processing based on MFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilczek F. Majorana returns. Nat Phys, 2009, 5: 614–618

    Article  Google Scholar 

  2. Alicea J. New directions in the pursuit of Majorana fermions in solid state systems. Rep Prog Phys, 2012, 75: 076501

    Article  ADS  Google Scholar 

  3. Stanescu T D, Tewari S. Search for Majorana Fermions in superconductors. J Phys Condens Matter, 2013, 25: 233201

    Article  ADS  Google Scholar 

  4. Alicea J. Exotic matter: Majorana modes materialize. Nat Nanotech, 2013, 8(9): 623–624

    Article  ADS  Google Scholar 

  5. Elliott S R, Franzy M. Colloquium: Majorana Fermions in nuclear, particle and solid-state physics. arXiv:1403.4976

  6. Read N. Green D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys Rev B, 2000, 61(15): 010267

    Article  Google Scholar 

  7. Fu L, Kane C L. Superconducting proximity effect and Majorana Fermions at the surface of a topological insulator. Phys Rev Lett, 2008, 100(9): 096407

    Article  ADS  Google Scholar 

  8. Tanaka Y, Yokoyama T, Nagaosa N. Manipulation of the Majorana Fermion, Andreev reflection, and Josephson current on topological insulators. Phys Rev Lett, 2009, 103(10): 107002

    Article  ADS  Google Scholar 

  9. Oreg Y, Refael G, von Oppen F. Helical liquids and Majorana bound states in quantum wires. Phys Rev Lett, 2010, 105(17): 177002

    Article  ADS  Google Scholar 

  10. Sau J D, Tewari S, Lutchyn R M, et al. Non-Abelian quantum order in spin-orbit-coupled semiconductors: Search for topological Majorana particles in solid-state systems. Phys Rev B, 2010, 82(21): 214509

    Article  ADS  Google Scholar 

  11. Nadj-Perge S, Drozdov I K, Bernevig B A, et al. Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor. Phys Rev B, 2013, 88(2): 020407

    Article  ADS  Google Scholar 

  12. Klinovaja J, Stano P, Yazdani A, et al. Topological superconductivity and Majorana Fermions in RKKY systems. Phys Rev Lett, 2013, 111(18): 186805

    Article  ADS  Google Scholar 

  13. Rokhinson L P, Liu X, Furdyna J K. The fractional a.c. Josephson effect in a semiconductor-superconductor nanowire as a signature of Majorana particles. Nat Phys, 2012, 8: 795–799

    Article  Google Scholar 

  14. Williams J R, Bestwick A J, Gallagher P, et al. Unconventional Josephson effect in hybrid superconductor-topological insulator devices. Phys Rev Lett, 2012, 109(5): 056803

    Article  ADS  Google Scholar 

  15. Das A, Ronen Y, Most Y, et al. Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions. Nat Phys, 2012, 8: 887–895

    Article  Google Scholar 

  16. Mourik V, Zuo K, Frolov S M, et al. Signatures of Majorana Fermions in hybrid superconductor-semiconductor nanowire devices. Science, 2012, 336: 1003–1007

    Article  ADS  Google Scholar 

  17. Deng M T, Yu C L, Huang G Y, et al. Anomalous zero-bias conductance peak in a Nb-InSb Nanowire-Nb hybrid device. Nano Lett, 2012, 12: 6414–6419

    Article  ADS  Google Scholar 

  18. Churchill H O H, Fatemi V, Grove-Rasmussen K, et al. Superconductor-nanowire devices from tunneling to the multichannel regime: Zero-bias oscillations and magnetoconductance crossover. Phys Rev B, 2013, 87(24): 241401

    Article  ADS  Google Scholar 

  19. Lee E J H, Jiang X, Houzet M, et al. Spin-resolved Andreev levels and parity crossings in hybrid superconductor-semiconductor nanostructures. Nat Nanotechnol, 2014, 9(1): 79–84

    Article  ADS  Google Scholar 

  20. Stanescu T D, Tewari S, Sau J D, et al. To close or not to close: The fate of the superconducting gap across the topological quantum phase transition in Majorana-Carrying semiconductor nanowires. Phys Rev Lett, 2012, 109(26): 266402

    Article  ADS  Google Scholar 

  21. Liu J, Potter A C, Law K T, et al. Zero-bias peaks in the tunneling conductance of spin-orbit-coupled superconducting wires with and without Majorana end-states. Phys Rev Lett, 2012, 109(26): 267002

    Article  ADS  Google Scholar 

  22. Lutchyn R M, Sau J D, Das S S. Majorana Fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys Rev Lett, 2010, 105(7): 077001

    Article  ADS  Google Scholar 

  23. Law K T, Lee P A, Ng T K. Majorana Fermion induced resonant Andreev reflection. Phys Rev Lett, 2009, 103(23): 237001

    Article  ADS  Google Scholar 

  24. Flensberg K. Tunneling characteristics of a chain of Majorana bound states. Phys Rev B, 2010, 82(18): 180516

    Article  ADS  Google Scholar 

  25. Wimmer M, Akhmerov A R, Dahlhaus J P, et al. Quantum point contact as a probe of a topological superconductor. New J Phys, 2011, 13: 053016

    Article  Google Scholar 

  26. Finck A D K, Van Harlingen D J, Mohseni P K, et al. Anomalous modulation of a zero-bias peak in a hybrid nanowire-superconductor device. Phys Rev Lett, 2013, 110(12): 126406

    Article  ADS  Google Scholar 

  27. Pikulin D I, Dahlhaus J P, Wimmer M, et al. A zero-voltage conductance peak from weak antilocalization in a Majorana nanowire. New J Phys, 2012, 14(12): 125011

    Article  Google Scholar 

  28. Potter A C, Lee P A. Multichannel generalization of Kitaev’s Majorana end states and a practical route to realize them in thin films. Phys Rev Lett, 2011, 105(22): 227003

    Article  ADS  Google Scholar 

  29. Lee E J H, Jiang X, Houzet M, et al. Spin-resolved Andreev levels and parity crossings in hybrid superconductor-semiconductor nanostructures. Nature Nanotech, 2014, 9: 79–84

    Article  ADS  Google Scholar 

  30. Bagrets D, Altland A, Class D. Spectral peak in Majorana quantum wires. Phys Rev Lett, 2012, 109(22): 227005

    Article  ADS  Google Scholar 

  31. Jundt G, Robledo L, Högele A, et al. Observation of dressed excitonic states in a single quantum dot. Phys Rev Lett, 2008, 100(17): 177401

    Article  ADS  Google Scholar 

  32. Urbaszek B, Marie X, Amand T, et al. Nuclear spin physics in quantum dots: An optical investigation. Rev Mod Phys, 2013, 85(1): 79–133

    Article  ADS  Google Scholar 

  33. Lassagne B, Tarakanov Y, Kinaret J, et al. Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Science, 2009, 325: 1107–1110

    Article  ADS  Google Scholar 

  34. Tamayo J, Kosaka P M, Ruz J J, et al. Biosensors based on nanomechanical systems. Chem Soc Rev, 2013, 42: 1287–1311

    Article  Google Scholar 

  35. Li J J, Zhu K D. All-optical mass sensing with coupled mechanical resonator systems. Phys Rep, 2013, 525: 223–254

    Article  ADS  MathSciNet  Google Scholar 

  36. LaHaye M D, Buu O, Camarota B, et al. Approaching the quantum limit of a nanomechanical resonator. Science, 2004, 304: 74–77

    Article  ADS  Google Scholar 

  37. Rugar D, Budakian R, Mamin H J, et al. Single spin detection by magnetic resonance force microscopy. Nature, 2004, 430: 329–332

    Article  ADS  Google Scholar 

  38. Poot M, van der Zant H S J. Mechanical systems in the quantum regime. Phys Rep, 2013, 511: 273–335

    Article  ADS  Google Scholar 

  39. Wilson-Rae I, Zoller P, Imamoḡlu A. Laser cooling of a nanomechanical resonator mode to its quantum ground state. Phys Rev Lett, 2004, 92(7): 075507

    Article  ADS  Google Scholar 

  40. Bennett S D, Cockins L, Miyahara Y, et al. Strong electromechanical coupling of an atomic force microscope cantilever to a quantum dot. Phys Rev Lett, 2010, 104(1): 017203

    Article  ADS  Google Scholar 

  41. Yeo I, de Assis P L, Gloppe A, et al. Strain-mediated coupling in a quantum dot-mechanical oscillator hybrid system. Nat Nanotechnol, 2014, 9(2): 106–110

    Article  ADS  Google Scholar 

  42. Sazonova, V, Yaish Y, Üetünel H, et al. A A tunable carbon nanotube electromechanical oscillator. N Nature, 2004, 431(7006): 284–287

    Article  ADS  Google Scholar 

  43. Hüttel A K, Steele G A, Witkamp B, et al. Carbon nanotubes as ultrahigh quality factor mechanical resonators. Nano Lett, 2009, 9(7): 2547–2552

    Article  ADS  Google Scholar 

  44. Chaste J, Sledzinska M, Zdrojek M, et al. High-frequency nanotube mechanical resonators. Appl Phys Lett, 2011, 99(21): 213502

    Article  ADS  Google Scholar 

  45. Jespersen T S, Grove-Rasmussen K, Paaske J, et al. Gate-dependent spin-orbit coupling in multielectron carbon nanotubes. Nat Phys, 2011, 7(4): 348–353

    Article  Google Scholar 

  46. Eichler A, Moser J, Chaste J, et al. Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nat Nanotech, 2011, 6: 339–342

    Article  ADS  Google Scholar 

  47. Lassagne B, Tarakanov Y, Kinaret J, et al. Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Science, 2009, 325(5944): 1107–1110

    Article  ADS  Google Scholar 

  48. Lassagne B, Garcia-Sanchez D, Aguasca A, et al. Ultrasensitive mass sensing with a nanotube electromechanical resonator. Nano Lett, 2008, 8(11): 3735–3738

    Article  ADS  Google Scholar 

  49. Chiu H Y, Hung P, Postma H W C, et al. Atomic-scale mass sensing using carbon nanotube resonators. Nano Lett, 2008, 8(12): 4342–4346

    Article  ADS  Google Scholar 

  50. Moser J, Güttinger J, Eichler A, et al. Ultrasensitive force detection with a nanotube mechanical resonator. Nat Nano, 2013, 8: 493–496

    Article  Google Scholar 

  51. Garcia-Sanchez D, San Paulo A, Esplandiu M J, et al. Mechanical detection of carbon nanotube resonator vibrations. Phys Rev Lett, 2007, 99(8): 085501

    Article  ADS  Google Scholar 

  52. Bennett S D, Kolkowitz S, Unterreithmeier Q P, et al. Measuring mechanical motion with a single spin. New J Phys, 2012, 14: 125004

    Article  Google Scholar 

  53. Kuemmeth F, llani S, Ralph D C, et al. Coupling of spin and orbital motion of electrons in carbonnanotubes, Nature, 2008, 452: 448–452

    Article  ADS  Google Scholar 

  54. Arcizet O, Jacques V, Siria A, et al. A single nitrogen-vacancy defect coupled to a nanomechanical oscillator. Nat Phys, 2011, 7: 879–883

    Article  Google Scholar 

  55. Pályi A, Struck P R, Rudner M, et al. Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator. Phys Rev Lett, 2012, 108(20): 206811

    Article  ADS  Google Scholar 

  56. Steele G A, Pei F, Laird E A, et al. Large spin-orbit coupling in carbon nanotubes. Nat Commun, 2012, 4: 1573–1580

    Article  Google Scholar 

  57. Li J J, Zhu K D. Spin-based optomechanics with carbon nanotubes. Sci Rep, 2012, 2: 903–909

    ADS  Google Scholar 

  58. Wang H, Burkard G. Mechanically induced spin resonance in a carbon nanotube. arXiv:1405.1347

  59. Boyd R W. Nonlinear Optics. San Diego, CA: Academic Press, 1992

    Google Scholar 

  60. Xu X D, Sun B, Berman P R, et al. Coherent optical spectroscopy of a strongly driven quantum dot. Science, 2007, 317: 929–932

    Article  ADS  Google Scholar 

  61. Xu X D, Sun B, Kim E D, et al. Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect. Phys Rev Lett, 2008, 101(22): 227401

    Article  ADS  Google Scholar 

  62. Weis S, Rivière R, Deleglise S, et al. Optomechanically induced transparency. Science, 2010, 330(6010): 1520–1523

    Article  ADS  Google Scholar 

  63. Teufel J D, Li D, Allman M S, et al. Circuit cavity electromechanics in the strong-coupling regime. Nature, 2011, 471(7337): 204–208

    Article  ADS  Google Scholar 

  64. Safavi-Naeini A H, Mayer Alegre T P, Chan J, et al. Electromagnetically induced transparency and slow light with optomechanics. Nature, 2011, 472(7341): 69–73

    Article  ADS  Google Scholar 

  65. Fiore V, Yang Y, Kuzyk M C, et al. Storing optical information as a mechanical excitation in a silica optomechanical resonator. Phys Rev Lett, 2011, 107(13): 133601

    Article  ADS  Google Scholar 

  66. Law K T, Lee P A, Ng T K. Majorana Fermion induced resonant Andreev reflection. Phys Rev Lett, 2009, 103(23): 237001

    Article  ADS  Google Scholar 

  67. Liu D E, Baranger H U. Detecting a Majorana-fermion zero mode using a quantum dot. Phys Rev B, 2011, 84(20): 201308

    Article  ADS  Google Scholar 

  68. Flensberg K. Non-Abelian operations on Majorana Fermions via single-charge control. Phys Rev Lett, 2011, 106(9): 090503

    Article  ADS  Google Scholar 

  69. Leijnse M, Flensberg K. Scheme to measure Majorana fermion lifetimes using a quantum dot. Phys Rev B, 2011, 84(14): 140501

    Article  ADS  Google Scholar 

  70. Cao Y S, Wang P Y, Xiong G, et al. Probing the existence and dynamics of Majorana fermion via transport through a quantum dot. Phys Rev B, 2012, 86(11): 115311

    Article  ADS  Google Scholar 

  71. Leijnse M. Thermoelectric signatures of a Majorana bound state coupled to a quantum dot, New J Phys, 2014, 16: 015029

    Article  Google Scholar 

  72. Li Y, Kundu A, Zhong F, et al. Tunable Floquet Majorana fermions in driven coupled quantum dots. Phys Rev B, 2014, 90(12): 121401

    Article  ADS  Google Scholar 

  73. Li J, Yu T. Lin H Q, et al. Probing the non-locality of Majorana fermions via quantum correlations. Sci Rep, 2014, 4: 4930–4935

    ADS  Google Scholar 

  74. da Silva S J S, Seridonio A C, Del Nero J, et al. Nonequilibrium transport in a quantum dot attached to a Majorana bound state. arXiv:1403.3575

  75. Dessotti F A, Ricco L S, de Souza M, et al. Probing the antisymmetric fano interference assisted by a Majorana Fermion. arXiv:1408.0454v1

  76. Cao Z, Fang T F, Luo H G. Detection of Majorana bound states by thermodynamically stable 4-periodic D.C. Josephson current. arXiv:1409.0196v2

  77. Walter S, Schmidt T L, Børkje K, et al. Detecting Majorana bound states by nanomechanics. Phys Rev B, 2011, 84(22): 224510

    Article  ADS  Google Scholar 

  78. Walter S, Budich J C. Teleportation-induced entanglement of two nanomechanical oscillators coupled to a topological superconductor. Phys Rev B, 2014, 89(15): 155431

    Article  ADS  Google Scholar 

  79. Chen H J, Zhu K D. Nonlinear optomechanical detection for Majorana fermions via a hybrid nanomechanical system. Nanoscale Res Lett, 2014, 9(1): 166–172

    Article  ADS  Google Scholar 

  80. Chen H J, Zhu K D. Possibility of Majorana signature detecting via a single-electron spin implanted in a suspended carbon nanotube resonator. RSC Adv, 2014, 4: 47587–47592

    Article  Google Scholar 

  81. Zrenner A, Beham E, Stufler S, et al. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature, 2002, 418(6898): 612–614

    Article  ADS  Google Scholar 

  82. Stufler S, Ester P, Zrenner A, et al. Quantum optical properties of a single InxGa1−x As-GaAs quantum dot two-level system. Phys Rev B, 2005, 72(12): 121301

    Article  ADS  Google Scholar 

  83. Ridolfo A, Stefano O D, Fina N, et al. Quantum plasmonics with quantum dot-metal nanoparticle molecules: Influence of the fano effect on photon statistics. Phys Rev Lett, 2010, 105(26): 263601

    Article  ADS  Google Scholar 

  84. Mahan G D. Many-Particle Physics. New York: Plenum Press, 1992

    Google Scholar 

  85. Nadj-Perge S, Drozdov I K, Bernevig B A, et al. Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor. Phys Rev B, 2013, 88(2): 020407

    Article  ADS  Google Scholar 

  86. Hewson A C. The Kondo Problem to Heavy Fermions. New York: Cambridge University Press, 1993

    Book  Google Scholar 

  87. Gardiner C W, Zoller P. Quantum Noise. 2nd ed. Berlin: Springer, 2000. 425–433

    Book  MATH  Google Scholar 

  88. Walls D F, Milburn G J. Quantum Optics. Berlin: Springer, 1994. 245–265

    Book  MATH  Google Scholar 

  89. Graff K F. Wave Motion in Elastic Solids Dover. New York: Oxford University Press, 1991

    Google Scholar 

  90. Ohm C, Stampfer C, Splettstoesser J, et al. Readout of carbon nanotube vibrations based on spin-phonon coupling. Appl Phys Lett, 2012, 100(14): 143103

    Article  ADS  Google Scholar 

  91. Flensberg K, Marcus C M. Bends in nanotubes allow electric spin control and coupling. Phys Rev B, 2012, 81(19): 195418

    Article  ADS  Google Scholar 

  92. Rudner M S, Rashba E I. Spin relaxation due to deflection coupling in nanotube quantum dots. Phys Rev B, 2012, 81(12): 125426

    Article  ADS  Google Scholar 

  93. Stapfner S, Ost L, Hunger D, et al. Cavity-enhanced optical detection of carbon nanotube Brownian motion. Appl Phys Lett, 2013, 102(15): 151910

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KaDi Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zhu, K. All-optical scheme for detecting the possible Majorana signature based on QD and nanomechanical resonator systems. Sci. China Phys. Mech. Astron. 58, 1–14 (2015). https://doi.org/10.1007/s11433-014-5637-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5637-4

Keywords

Navigation