Skip to main content
Log in

Manipulating a micro-cantilever between its optomechanical bistable states in a lever-based Fabry-Pérot cavity

  • Article
  • Special Topic: Optomechanics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In this paper, we demonstrate experimentally switching a cantilever between its optomechanical bistable states in a low finesse optical cavity. Our experiment shows that the deformation of cantilever can be manipulated by tuning the cavity resonance. When the laser power increases across the threshold value of 110 μW, optomechanical bistability is induced by strong static photothermal backaction at room temperature. Numerical calculation revealed that the bistable effect originates from the multi-well potential created via the optomechanical interaction. Switching of the cantilever between the bistable states was achieved by tuning the cavity to the corresponding boundaries of the bistable region, where the barrier between the bistable states vanishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Metzger C H, Karrai K. Cavity cooling of a microlever. Nature, 2004, 432: 1002–1005

    Article  ADS  Google Scholar 

  2. Schliesser A, Rivière R, Anetsberger G, et al. Resolved-sideband cooling of a micromechanical oscillator. Nat Phys, 2008, 4: 415–419

    Article  Google Scholar 

  3. Fu H, Liu C D, Liu Y, et al. Laser spot position dependence in photothermal mode cooling of a microcantilever. Opt Lett, 2012, 37: 584–586

    Article  ADS  Google Scholar 

  4. Thompson J D, Zwickl B M, Jayich A M, et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature, 2008, 452: 72–75

    Article  ADS  Google Scholar 

  5. Corbitt T, Chen Y, Innerhofer E, et al. An all-optical trap for a gram-scale mirror. Phys Rev Lett, 2007, 98: 150802

    Article  ADS  Google Scholar 

  6. Arcizet O, Cohadon P F, Briant T, et al. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature, 2006, 444: 71–74

    Article  ADS  Google Scholar 

  7. Chan J, Alegre T P M, Naeini A H S, et al. Laser cooling of nanomechanical oscillator into its quantum ground state. Nature, 2011, 478: 89–92

    Article  ADS  Google Scholar 

  8. Ni K K, Norte R, Wilson D J, et al. Enhancement of mechanical Q factors by optical trapping. Phys Rev Lett, 2012, 108: 214302

    Article  ADS  Google Scholar 

  9. Fu H, Mao T H, Li Y, et al. Optically mediated spatial localization of collective modes of two coupled cantilevers for high sensitivity optomechanical transducer. Appl Phys Lett, 2014, 105: 014108

    Article  ADS  Google Scholar 

  10. Shkarin A B, Jacobs N E F, Hoch S W, et al. Optically mediated hybridization between two mechanical modes. Phys Rev Lett, 2014, 112: 013602

    Article  ADS  Google Scholar 

  11. Dorsel A, McCullen J D, Meystre P, et al. Optical bistability and mirror confinement induced by radiation pressure. Phys Rev Lett, 1983, 51: 1550–1553

    Article  ADS  Google Scholar 

  12. McCullen J D, Meystre P, Wright E M. Mirror confinement and control through radiation pressure. Opt Lett, 1984, 9: 193–195

    Article  ADS  Google Scholar 

  13. Vogel M, Mooser C, Karrai K, et al. Optically tunable mechanics of microlevers. Appl Phys Lett, 2003, 83: 1337–1339

    Article  ADS  Google Scholar 

  14. Mueller F, Heugel S, Wang L J. Observation of optomechanical multistability in a high-Q torsion balance oscillator. Phys Rev A, 2008, 77: 031802

    Article  ADS  Google Scholar 

  15. Bhattacharya M, Meystre P. Trapping and cooling a mirror to its quantum mechanical ground state. Phys Rev Lett, 2007, 99: 073601

    Article  ADS  Google Scholar 

  16. Wiederhecker G S, Chen L, Gondarenko A, et al. Control photonic structures using optical forces. Nature, 2009, 462: 633–636

    Article  ADS  Google Scholar 

  17. Rodriguez A W, Woolf D, Hu P, et al. Designing evanescent optical interactions to control the expression of Casimir forces in optomechanical structures. Appl Phys Lett, 2011, 98: 194105

    Article  ADS  Google Scholar 

  18. Jiang C, Liu H, Cui Y, et al. Controllable optical bistability based on photons and phonons in a two-mode optomechanical system. Phys Rev A, 2013, 88: 055801

    Article  ADS  Google Scholar 

  19. Deotare P B, Bulu I, Frank I W, et al. All optical reconfiguration of optomechanical filters. Nat Commun, 2012, 3: 846

    Article  ADS  Google Scholar 

  20. Arcizet O, Rivière R, Schliesser A, et al. Cryogenic properties of optomechanical silica microcavities. Phys Rev A, 2009, 80: 021803

    Article  ADS  Google Scholar 

  21. Hui P, Woolf D, Iwase E, et al. Optical bistability with a repulsive optical force in coupled silicon photonic crystal membranes. Appl Phys Lett, 2013, 103: 021102

    Article  ADS  Google Scholar 

  22. Dalafi A, Naderi M H, Soltanolkotabi M, et al. Controllability of optical bistability, cooling and entanglement in hybrid cavity optomechanical systems by nonlinear atom-atom interaction. J Phys B, 2013, 46: 235502

    Article  ADS  Google Scholar 

  23. Purdy T P, Brooks D W C, Botter T, et al. Tunable cavity optomechanical with ultracold atoms. Phys Rev Lett, 2010, 105: 133602

    Article  ADS  Google Scholar 

  24. Fu H, Liu C D, Liu Y, et al. Selective photothermal self-excitation of mechanical modes of a micro-cantilever for force microscopy. Appl Phys Lett, 2011, 99: 173501

    Article  ADS  Google Scholar 

  25. Fu H, Ding L P, Mao T H, et al. Temperature enhanced photothermal cooling of a micro-cantilever. arXiv:1408.6056

  26. Bagheri M, Poot M, Li M, et al. Dynamical manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation. Nat Nanotechnol, 2011, 6: 726–732

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GengYu Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Ding, J., Li, Y. et al. Manipulating a micro-cantilever between its optomechanical bistable states in a lever-based Fabry-Pérot cavity. Sci. China Phys. Mech. Astron. 58, 1–5 (2015). https://doi.org/10.1007/s11433-014-5624-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5624-9

Keywords

Navigation