Skip to main content
Log in

Dynamical Casimir effect in dissipative superconducting circuit system

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We investigate the possibility of observing in integrated solid-state systems the dynamical Casimir effect, in which photons are created out of vacuum. We use a transmission line resonator on a superconducting chip as the microwave cavity and modulate its properties by coupling it to carefully designed Josephson devices. We evaluate the effect of main decoherence sources and show that our design offers a promising system for experimentally demonstrating the dynamical Casimir effect. Moreover, we also study the squeezing properties of the created photon field and how they depend on the dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moore G T. Quantum theory of the electromagnetic field in a variable-length one-dimensional cavity. J Math Phys, 1970, 11: 2679–2691

    Article  ADS  Google Scholar 

  2. Law CK. Effective Hamiltonian for the radiation in a cavity with a moving mirror and a time-varying dielectric medium. Phys Rev A, 1994, 49: 433–437

    Article  ADS  Google Scholar 

  3. Law C K. Resonance response of the quantum vacuum to an oscillating boundary. Phys Rev Lett, 1994, 73: 1931–1934

    Article  ADS  Google Scholar 

  4. Dodonov V V, Klimov A B. Generation and detection of photons in a cavity with a resonantly oscillating boundary. Phys Rev A, 1996, 53: 2664–2682

    Article  ADS  Google Scholar 

  5. Uhlmann M, Plunien G, Schützhold R, et al. Resonant cavity photon creation via the dynamical Casimir effect. Phys Rev Lett, 2004, 93: 193601

    Article  ADS  Google Scholar 

  6. Schützhold R, Plunien G, Soff G. Trembling cavities in the canonical approach. Phys Rev A, 1998, 57: 2311–231

    Article  ADS  Google Scholar 

  7. Crocce M, Dalvit D A R, Mazzzitelli F D. Resonant photon creation in a three-dimensional oscillating cavity. Phys Rev A, 2001, 64: 013808

    Article  ADS  Google Scholar 

  8. Crocce M, Dalvit D A R, Lombardo F C, et al. Model for resonant photon creation in a cavity with time-dependent conductivity. Phys Rev A, 2004, 70: 033811

    Article  ADS  Google Scholar 

  9. Dodonov A V, Dodonov V V. Resonance generation of photons from vacuum in cavities due to strong periodical changes of conductivity in a thin semiconductor boundary layer. J Opt B, 2005, 7: S47–S58

    Article  ADS  Google Scholar 

  10. Johansson J R, Johansson G, Wilson C M, et al. Dynamical Casimir effect in a superconducting coplanar waveguide. Phys Rev Lett, 2009, 103: 147003

    Article  ADS  Google Scholar 

  11. Johansson J R, Johansson G, Wilson C M, et al. Dynamical Casimir effect in superconducting microwave circuits. Phys Rev A, 2010, 82: 052509

    Article  ADS  Google Scholar 

  12. Wilson C M, Johansson G, Pourkabirian A, et al. Observation of the dynamical Casimir effect in a superconducting circuit. Nature, 2011, 479: 376–379

    Article  ADS  Google Scholar 

  13. Lähteenmäki P, Paraoanu G S, Hassel J, et al. Dynamical Casimir effect in a Josephson metamaterial. Proc Nat Acad Sci USA, 2013, 110: 4234–423

    Article  ADS  Google Scholar 

  14. Wang H, Sun H C, Zhang J, et al. Transparency and amplification in a hybrid system of the mechanical resonator and circuit QED. Sci China-Phys Mech Astron, 2012, 55: 2264–2272

    Article  ADS  MathSciNet  Google Scholar 

  15. Yu L B, Tong N H, Xue Z Y, et al. Simulation of the spin-boson model with superconducting phase qubit coupled to a transmission line. Sci China-Phys Mech Astron, 2012, 55: 1557–1561

    Article  ADS  Google Scholar 

  16. Gao G L, Cai G C, Huang S S, et al. 1 → N quantum controlled phase gate realized in a circuit QED system. Sci China-Phys Mech Astron, 2012, 55: 1422–1426

    Article  ADS  Google Scholar 

  17. Chen S J, Liu D K, You L X, et al. Superconducting nanowire singlephoton detection system and demonstration in quantum key distribution. Chin Sci Bull, 2013, 58: 1145–1149

    Article  Google Scholar 

  18. Wallquist M, Shumeiko V S, Wendin G. Selective coupling of superconducting charge qubits mediated by a tunable stripline cavity. Phys Rev B, 2006, 74: 224506

    Article  ADS  Google Scholar 

  19. Blais A, Huang R S, Wallraff A, et al. Cavity quantum electrodynamics for superconducting electrical circuit: An architecture for quantum computation. Phys Rev A, 2004, 69: 062320

    Article  ADS  Google Scholar 

  20. Day P K, LeDuc H G, Mazin B A, et al. A broadband superconducting detector suitable for use in large arrays. Nature, 2003, 425: 817–820

    Article  ADS  Google Scholar 

  21. Liharev K K. Dynamics of Josephson Junctions and Circuits. New York: Gordon and Breach Science Publishers, 1986

    Google Scholar 

  22. Niemczyk T, Deppe F, Huebl H, et al. Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat Phys, 2010, 6: 772–776

    Article  Google Scholar 

  23. Paik H, Schuster D I, Bishop L S, et al. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys Rev Lett, 2011, 107: 240501

    Article  ADS  Google Scholar 

  24. Walls D F, Milburn G J. Quantum Optics. New York: Springer-Verlag, 2008

    Book  MATH  Google Scholar 

  25. Braunstein S L, van Loock P. Quantum information with continuous variables. Rev Mod Phys, 2005, 77: 513–577

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhengWei Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Luo, X. & Zhou, Z. Dynamical Casimir effect in dissipative superconducting circuit system. Sci. China Phys. Mech. Astron. 57, 2251–2258 (2014). https://doi.org/10.1007/s11433-014-5600-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5600-4

Keywords

Navigation