Skip to main content

First dark matter search results from the PandaX-I experiment

Abstract

We report on the first dark-matter (DM) search results from PandaX-I, a low threshold dual-phase xenon experiment operating at the China JinPing Underground Laboratory. In the 37-kg liquid xenon target with 17.4 live-days of exposure, no DM particle candidate event was found. This result sets a stringent limit for low-mass DM particles and disfavors the interpretation of previously-reported positive experimental results. The minimum upper limit, 3.7 × 10−44 cm2, for the spin-independent isoscalar DM-particle-nucleon scattering cross section is obtained at a DM-particle mass of 49GeV/c2 at 90% confidence level.

This is a preview of subscription content, access via your institution.

References

  1. 1

    See for example, Bertone G, Hooper D, Silk J. Particle dark matter: Evidence, candidates and constraints. Phys Rept, 2005, 405: 279–390

    Article  ADS  Google Scholar 

  2. 2

    Akimov D. Techniques and results for the direct detection of dark matter (review). Nucl Instrum Meth A, 2011, 628: 50–58; Gaitskell R. Direct detection of dark matter. Ann Rev Nucl Part Sci, 2004, 54: 315–359; for more recent experiments, see talks at 2014 Dark Matter Conference at UCLA, https://hepconf.physics.ucla.edu/dm14/agenda.html

    Article  ADS  Google Scholar 

  3. 3

    Jungman G, Kamionkowski M, Griest K. Supersymmetric dark matter. Phys Rept, 1996, 267: 195–373

    Article  ADS  Google Scholar 

  4. 4

    Bernabei R, Belli P, Cappella F, et al. (DAMA Collaboration). First results from DAMA/LIBRA and the combined results with DAMA/NaI. Eur Phys J C, 2008, 56: 333–355; Bernabei R, Belli P, Cappella F, et al. (DAMA Collaboration). New results from DAMA/LIBRA. Eur Phys J C, 2010, 67: 39–49; Bernabei R, Belli P, Cappella F, et al. (DAMACollaboration). Final model independent result of DAMA/LIBRA-phase1. Eur Phys J C, 2013, 73: 2468

    Article  ADS  Google Scholar 

  5. 5

    Savage C, Gelmini G, Gondolo P, et al. Compatibility of DAMA/LIBRA dark matter detection with other searches. J Cosmol Astropart Phys, 2009, 0904: 010

    Article  ADS  Google Scholar 

  6. 6

    Aalseth C E, Barbeau P S, Colaresi J, et al. (CoGeNT Collaboration). Results from a search for light-mass dark matter with a p-type point contact germanium detector. Phys Rev Lett, 2011, 106: 131301; Aalseth C E, Barbeau P S, Colaresi J, et al. (CoGeNT Collaboration). CoGeNT: A search for low-mass dark matter using p-type point contact germanium detectors. Phys Rev D, 2013, 88(1): 012002; and latest analysis using maximum likelihood method in arXiv:1401.6234

    Article  ADS  Google Scholar 

  7. 7

    Agnese R, Ahmed Z, Anderson A J, et al. (CDMS Collaboration). Silicon detector dark matter results from the final exposure of CDMS II. Phys Rev Lett, 2013, 111: 251301

    Article  ADS  Google Scholar 

  8. 8

    Angloher G, Bauer M, Bavykina I, et al. (CRESST Collaboration). Results from 730 kg days of the CRESST-II dark matter search. Eur Phys J C, 2012, 72: 1791

    Article  Google Scholar 

  9. 9

    Angloher G, Bento A, Bucci C, et al. (CRESST Collaboration). Results on low mass WIMPs using an upgraded CRESST-II detector. arXiv:1407.3146

  10. 10

    See for example, Volkas R R, Petraki K. Review of asymmetric dark matter. Int J Mod Phys A, 2013, 28: 1330028; Zurek K M. Asymmetric dark matter: Theories, signatures, and constraints. Phys Rept, 2014, 537: 91–121, and the references there-in

    MathSciNet  Article  Google Scholar 

  11. 11

    Zhao W, Yue Q, Kang K J, et al. (CDEX Collaboration). First results on low-mass WIMPs from the CDEX-1 experiment at the China Jinping underground laboratory. Phys Rev D, 2013, 88: 052004

    Article  ADS  Google Scholar 

  12. 12

    Yue Q, Zhao W, Kang K J, et al. (CDEX Collaboration). Limits on light WIMPs from the CDEX-1 experiment with a p-type pointcontact germanium detector at the China Jingping underground laboratory. arXiv:1404.4946

  13. 13

    Agnese R, Anderson A J, Asai M, et al. (SuperCDMS Collaboration). Search for low-mass weakly interacting massive particles with super-CDMS. Phys Rev Lett, 2014, 112: 241302

    Article  ADS  Google Scholar 

  14. 14

    Agnese R, Anderson A J, Asai M, et al. (SuperCDMS Collaboration). Search for low-mass weakly interacting massive particles using voltage-assisted calorimetric ionization detection in the SuperCDMS experiment. Phys Rev Lett, 2014, 112: 041302

    Article  ADS  Google Scholar 

  15. 15

    Angle J, Aprile E, Arneodo F, et al. (XENON10 Collaboration). First results from the XENON10 dark matter experiment at the Gran Sasso National Laboratory. Phys Rev Lett, 2008, 100: 021303

    Article  ADS  Google Scholar 

  16. 16

    Angle J, Aprile E, Arneodo F, et al. (XENON10 Collaboration). Search for light dark matter in XENON10 data. Phys Rev Lett, 2011, 107: 051301; Erratum-ibid, 2013, 110: 249901

    Article  ADS  Google Scholar 

  17. 17

    Aprile E, Arisaka K, Arneodo F, et al. (XENON100 Collaboration). First dark matter results from the XENON100 experiment. Phys Rev Lett, 2010, 105: 131302

    Article  ADS  Google Scholar 

  18. 18

    Aprile E, Arisaka K, Arneodo F, et al. (XENON100 Collaboration). Dark matter results from 100 live days of XENON100 data. Phys Rev Lett, 2011, 107: 131302

    Article  ADS  Google Scholar 

  19. 19

    Aprile E, Alfonsi M, Arisaka K, et al. (XENON100 Collaboration). Dark matter results from 225 live days of XENON100 data. Phys Rev Lett, 2012, 109: 181301

    Article  ADS  Google Scholar 

  20. 20

    Akerib D S, Araujo H M, Bai X, et al. (LUX Collaboration). First results from the LUX dark matter experiment at the Sanford underground research facility. Phys Rev Lett, 2014, 112: 091303

    Article  ADS  Google Scholar 

  21. 21

    Kang K J, Cheng J P, Chen Y H, et al. Status and prospects of a deep underground laboratory in China. J Phys Conf Ser, 2010, 203: 012028; Wong H T. Dark matter search with sub-keV germanium detectors at the China Jinping underground laboratory. J Phys Conf Ser, 2012, 375: 042061; Li J, Ji X, Haxton W, et al. The second-phase development of the China JinPing underground laboratory. arXiv:1404.2651[physics.ins-det]

    Article  ADS  Google Scholar 

  22. 22

    Cao X G, Chen X, Chen Y H, et al. (PandaX Collaboration). PandaX: A liquid xenon dark matter experiment at CJPL. Sci China-Phys Mech Astron, 2014, 57(8): 1476–1494

    Article  ADS  Google Scholar 

  23. 23

    Aprile E, Doke T. Liquid xenon detectors for particle physics and astrophysics. Rev Mod Phys, 2010, 82: 2053–2097

    Article  ADS  Google Scholar 

  24. 24

    Yoshino K, Sowada U, Schmidt W F. Effect of molecular solutes on electron-drift velocity in liquid Ar, Kr, and Xe. Phys Rev A, 1976, 14: 438–444

    Article  ADS  Google Scholar 

  25. 25

    Szydagis M, Barry N, Kazkaz K, et al. NEST: A comprehensive model for scintillation yield in liquid xenon. J Instrum, 2011, 6: P10002; Szydagis M, Fyhrie A, Thorngren D, et al. Enhancement of NEST capabilities for simulating low-energy recoils in liquid xenon. J Instrum, 2013, 8: C10003

    Article  Google Scholar 

  26. 26

    Agostinelli S, Allison J, Amako K, et al. GEANT4—a simulation toolkit. Nucl Instrum Methods Phys Res Sect A-Accel Spectrom Dect Assoc Equip, 2003, 506(3): 250–303; Allison J, Amako K, Apostolakis J, et al. Geant4 developments and applications. IEEE Trans Nucl Sci, 2006, 53(1): 270–278

    Article  ADS  Google Scholar 

  27. 27

    Dobi A, Davis C, Hall C, et al. Detection of krypton in xenon for dark matter applications. Nucl Instrum Methods Phys Res Sect A-Accel Spectrom Dect Assoc Equip, 2011, 665: 1–6

    Article  ADS  Google Scholar 

  28. 28

    Smith M C, Ruchti G R, Helmi A, et al. The RAVE survey: Constraining the local Galactic escape speed. Mon Not R Astron Soc, 2007, 379: 755–772

    Article  ADS  Google Scholar 

  29. 29

    Savage C, Freese K, Gondolo P. Annual modulation of dark matter in the presence of streams. Phys Rev D, 2006, 74: 043531

    Article  ADS  Google Scholar 

  30. 30

    Feldman G J, Cousins R D. Unified approach to the classical statistical analysis of small signals. Phys Rev D, 1998, 57: 3873–3889

    Article  ADS  Google Scholar 

  31. 31

    Mu W, Xiong X N, Ji X D. Scintillation efficiency for low energy nuclear recoils in liquid xenon dark matter detectors. Astropart Phys, 2014, 61: 56–61

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Consortia

Corresponding authors

Correspondence to JiangLai Liu or KaiXuan Ni.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiao, M., Xiao, X., Zhao, L. et al. First dark matter search results from the PandaX-I experiment. Sci. China Phys. Mech. Astron. 57, 2024–2030 (2014). https://doi.org/10.1007/s11433-014-5598-7

Download citation

Keywords

  • dark matter
  • direct detection
  • xenon