Skip to main content
Log in

The form-invariance of wave equations without requiring a priori relations between field variables

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

According to the principle of relativity, the equations describing the laws of physics should have the same forms in all admissible frames of reference, i.e., form-invariance is an intrinsic property of correct wave equations. However, so far in the design of metamaterials by transformation methods, the form-invariance is always proved by using certain relations between field variables before and after coordinate transformation. The main contribution of this paper is to give general proofs of form-invariance of electromagnetic, sound and elastic wave equations in the global Cartesian coordinate system without using any assumption of the relation between field variables. The results show that electromagnetic wave equations and sound wave equations are intrinsically form-invariant, but traditional elastodynamic equations are not. As a by-product, one can naturally obtain new elastodynamic equations in the time domain that are locally accurate to describe the elastic wave propagation in inhomogeneous media. The validity of these new equations is demonstrated by some numerical simulations of a perfect elastic wave rotator and an approximate elastic wave cloak. These findings are important for solving inverse scattering problems in many fields such as seismology, nondestructive evaluation and metamaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leonhardt U. Optical conformal mapping. Science, 2006, 312: 1777–1780

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312: 1780–1782

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Shamonina E, Solymar L. Metamaterials: How the subject started. Metamaterials, 2007, 1: 12–18

    Article  ADS  Google Scholar 

  4. Greenleaf A, Lassas M, Uhlmann G. On nonuniqueness for Calderon’s inverse problem. Math Res Lett, 2003, 10: 685–693

    Article  MATH  MathSciNet  Google Scholar 

  5. Greenleaf A, Kurylev Y, Lassas M, et al. Invisibility and inverse problems. Bull Am Math Soc, 2009, 46: 55–97

    Article  MATH  MathSciNet  Google Scholar 

  6. Leonhardt U, Philbin T. Geometry and Light. New York: Dover, 2010. 166–170, 173–175

    MathSciNet  Google Scholar 

  7. Chen H, Chan C T. Acoustic cloaking and transformation acoustics. J Phys D-Appl Phys, 2010, 43: 113001

    Article  ADS  MathSciNet  Google Scholar 

  8. Chen H, Chan C T, Sheng P. Transformation optics and metamaterials. Nat Mater, 2010, 9: 387–396

    Article  ADS  Google Scholar 

  9. Milton G W, Briane M, Willis J R. On cloaking for elasticity and physical equations with a transformation invariant form. New J Phys, 2006, 8: 248

    Article  Google Scholar 

  10. Ward A J, Pendry J B. Refraction and geometry in Maxwell’s equations. J Mod Opt, 1996, 43: 773–793

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Truesdell C, Noll W. The Non-Linear Field Theories of Mechanics. 3rd ed. Heideberg: Springer, 2004. 44–47

    Book  Google Scholar 

  12. Cummer S A, Schurig D. One path to acoustic cloaking. New J Phys, 2007, 9: 45

    Article  Google Scholar 

  13. Norris A N. Acoustic metafluids. J Acoust Soc Am, 2009, 125: 839–849

    Article  ADS  Google Scholar 

  14. Norris A N, Shuvalov A L. Elastic cloaking theory. Wave Motion, 2011, 48: 525–538

    Article  MATH  MathSciNet  Google Scholar 

  15. Whitehead A N. The Principle of Relativity with Applications to Physical Science. Cambridge: Cambridge University Press, 1922. 146–147

    Google Scholar 

  16. Willis J R. Variational principles for dynamics problems in inhomogeneous elastic media. Wave Motion, 1981, 3: 1–11

    Article  MATH  MathSciNet  Google Scholar 

  17. Willis J R. Variational principles and operator equations for electromagnetic waves in inhomogeneous media. Wave Motion, 1984, 6: 127–139

    Article  MATH  MathSciNet  Google Scholar 

  18. Willis J R. Dynamics of composites continuum micromechanics. In: Suquet P, ed. Continuum Micromechanics: CISM Courses and Lectures No. 377. Berlin: Springer-Verlag, 1997. 265–290

    Chapter  Google Scholar 

  19. Willis J R. Effective constitutive relations for waves in composites and metamaterials. Proc R Soc A, 2011, 467: 1865–1879

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Norris A N, Shuvalov A L, Kutsenko A A. Analytical formulation of three-dimensional dynamic homogenization for periodic elastic systems. Proc R Soc A, 2012, 468: 1629–1651

    Article  ADS  MathSciNet  Google Scholar 

  21. Srivastava A, Nemat-Nasser S. Overall dynamic properties of three-dimensional periodic elastic composites. Proc R Soc A, 2012, 468: 269–287

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Chen H, Chan C T. Acoustic cloaking in three dimensions using acoustic metamaterials. Appl Phys Lett, 2007, 91: 183518

    Article  ADS  Google Scholar 

  23. Hu J, Chang Z, Hu G K. Approximate method for controlling solid elastic waves by transformation media. Phys Rev B, 2011, 84: 201101 (R)

    Article  ADS  Google Scholar 

  24. Cerveny V. Seismic Ray Theory. Cambridge: Cambridge University Press, 2001. 2

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiHai Xiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Z. The form-invariance of wave equations without requiring a priori relations between field variables. Sci. China Phys. Mech. Astron. 57, 2285–2296 (2014). https://doi.org/10.1007/s11433-014-5592-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5592-0

Keywords

Navigation