Skip to main content
Log in

350 μm map of the Ophiuchus molecular cloud: core mass function

  • Article
  • Star and Galactic System
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Stars are born in dense cores of molecular clouds. The core mass function (CMF), which is the mass distribution of dense cores, is important for understanding the stellar initial mass function (IMF). We obtained 350 μm dust continuum data using the SHARC-II camera at the Caltech Submillimeter Observatory (CSO) telescope. A 350 μm map covering 0.25 deg2 of the Ophiuchus molecular cloud was created by mosaicing 56 separate scans. The CSO telescope had an angular resolution of 9″, corresponding to 1.2 × 103 AU at the distance of the Ophiuchus molecular cloud (131 pc). The data was reduced using the Comprehensive Reduction Utility for SHARC-II (CRUSH). The flux density map was analyzed using the GaussClumps algorithm, within which 75 cores has been identified. We used the Spitzer c2d catalogs to separate the cores into 63 starless cores and 12 protostellar cores. By locating Jeans instabilities, 55 prestellar cores (a subcategory of starless cores) were also identified. The excitation temperatures, which were derived from FCRAO 12CO data, help to improve the accuracy of the masses of the cores. We adopted a Monte Carlo approach to analyze the CMF with two types of functional forms; power law and log-normal. The whole and prestellar CMF are both well fitted by a log-normal distribution, with µ = −1.18 ± 0.10, σ = 0.58 ± 0.05 and µ = 1.40 ± 0.10, σ = 0.50 ± 0.05 respectively. This finding suggests that turbulence influences the evolution of the Ophiuchus molecular cloud.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ward-Thompson D, Scott P F, HILLS R E, et al. A submillimetre continuum survey of pre protostellar cores. Mon Not R Astron Soc, 1994, 268: 276–290

    Article  ADS  Google Scholar 

  2. Kirk J M, Ward-Thompson D, André P. The initial conditions of isolated star formation-VI. SCUBA mapping of pre-stellar cores. Mon Not R Astron Soc, 2005, 360: 1506–1526

    Article  ADS  Google Scholar 

  3. Ward-Thompson D, Andre P, Crutcher R, et al. Protostars and Planets V. Reipurth B, Jewitt D, Keil K, eds. Tucson, Arizona: The University of Arizona Press, 2007

  4. Alves J, Lombardi M, Lada C J. The mass function of dense molecular cores and the origin of the IMF. Astron Astrophys, 2007, 462: L17–L21

    Article  ADS  Google Scholar 

  5. Lada C J, Muench A A, Rathborne J, et al. The nature of the dense core population in the pipe Nebula: Thermal cores under pressure. Astrophys J, 2008, 672: 410–422

    Article  ADS  Google Scholar 

  6. Evans II N J, Dunham M M, Jφrgensen J K, et al. The Spitzer c2d Legacy results: Star-formation rates and efficiencies; evolution and lifetimes. Astrophys J Suppl, 2009, 181: 321–350

    Article  ADS  Google Scholar 

  7. Tafalla M. Molecules in outflows from young Stellar objects. Astron Soc Pac, 2013, 476: 177

    ADS  Google Scholar 

  8. Tafalla M, Hacar A. HH 114 MMS: A new chemically active outflow. Astron Astrophys. 2013, 552: L9

    Article  ADS  Google Scholar 

  9. Tafalla M, Liseau R, Nisini B, et al. High-pressure, low-abundance water in bipolar outflows. Results from a Herschel-WISH survey. Astron Astrophys. 2013, 551: A116

    Article  ADS  Google Scholar 

  10. Enoch M, Evans II N, Sargent A, et al. The mass distribution and lifetime of Prestellar cores in Perseus, Serpens, and Ophiuchus. Astrophys J, 2008, 684: 1240–1259

    Article  ADS  Google Scholar 

  11. Ballesteros-Paredes J, Gazol A, Kim J, et al. The mass spectra of cores in turbulent molecular clouds and implications for the initial mass function. Astrophys J, 2006, 637: 384–391

    Article  ADS  Google Scholar 

  12. Padoan P, Nordlund Å. The Stellar initial mass function from turbulent fragmentation. Astrophys J, 2002, 576: 870–879

    Article  ADS  Google Scholar 

  13. Larson R B. Dynamical models for the formation and evolution of spherical galaxies. Mon Not R Astron Soc, 1974, 166: 585–616

    Article  ADS  Google Scholar 

  14. Adams F C, Fatuzzo M. A theory of the initial mass function for star formation in molecular clouds. Astrophys J, 1996, 464: 256–271

    Article  ADS  Google Scholar 

  15. Swift J J, Beaumont C N. Discerning the form of the dense core mass function. Publ Astron Soc Pac, 2010, 122: 224–230

    Article  ADS  Google Scholar 

  16. Li D, Velusamy T, Goldsmith P, et al. Massive quiescent cores in orion. II. Core mass function. Astrophys J, 2007, 655: 351–363

    Article  ADS  Google Scholar 

  17. Casassus S, Dickinson C, Cleary K, et al. Centimetre-wave continuum radiation from the Ophiuchi molecular cloud. Mon Not R Astron Soc, 2008, 391: 1075–1090

    Article  ADS  Google Scholar 

  18. Motte F, Andre P, Neri R. The initial conditions of star formation in the ρ Ophiuchi main cloud: Wide-field millimeter continuum mapping. Astron Astrophys, 1998, 336: 150–172

    ADS  Google Scholar 

  19. Johnstone D, Wilson C, Moriarty-Schieven G, et al. Large-area mapping at 850 microns. II. Analysis of the clump distribution in the ρ Ophiuchi molecular cloud. Astrophys J, 2000, 545: 327–339

    Article  ADS  Google Scholar 

  20. Young K E, Enoch M L, Evans N J, et al. Bolocam survey for 1.1 mm dust continuum emission in the c2d legacy clouds. II. Ophiuchus. Astrophys J, 2006, 644: 326–343

    Article  ADS  Google Scholar 

  21. Stanke T, Smith M, Gredel R, et al. An unbiased search for the signatures of protostars in the Ophiuchi molecular cloud. II. Millimetre continuum observations. Astron Astrophys, 2006, 447: 609–622

    Article  ADS  Google Scholar 

  22. Pilbratt G L, Riedinger J R, Passvogel T, et al. Herschel space observatory. An ESA facility for far-infrared and submillimetre astronomy. Astron Astrophys, 2010, 518

  23. Dowell C D, Allen C A, Babu R S, et al. SHARC II: A caltech submillimeter observatory facility camera with 384 pixels. Proc SPIE, 2003, 4855: 73–87

    Article  ADS  Google Scholar 

  24. Kovács A. Scanning strategies for imaging arrays. Proc Int Soc Opt Photon, 2008, 7020: 702007

    Google Scholar 

  25. Kovács A. CRUSH: Fast and scalable data reduction for imaging arrays. Int Soc Opt Photon, 2008, 7020: 70201S

    Google Scholar 

  26. Berry D, Currie M, Jenness T, et al. Starlink 2012: The Kapuahi release. Astron Soc Pac, 2013, 475: 247–250

    ADS  Google Scholar 

  27. Stutzki J, Guesten R. High spatial resolution isotopic CO and CS observations of M17 SW-The clumpy structure of the molecular cloud core. Astrophys J, 1990, 356: 513–533

    Article  ADS  Google Scholar 

  28. Lombardi M, Bertin G. Boyle’s law and gravitational instability. Astron Astrophys. 2001, 375: 1091–1099

    Article  ADS  Google Scholar 

  29. Goldsmith P F. Molecular depletion and thermal balance in dark cloud cores. Astrophys J. 2001, 557: 736–746

    Article  ADS  Google Scholar 

  30. Qian L, Li D, Goldsmith P. 13CO cores in the Taurus molecular cloud. Astrophys J, 2012, 760: 147–160

    Article  ADS  Google Scholar 

  31. Bontemps S, André P, Kaas A A, et al. ISOCAM observations of the rho Ophiuchi cloud: Luminosity and mass functions of the pre-main sequence embedded cluster. Astron Astrophys, 2001, 372: 173–194

    Article  ADS  Google Scholar 

  32. Mamajek E E. On the distance to the Ophiuchus star-forming region. Astron Nachr, 2008, 329: 10

    Article  ADS  Google Scholar 

  33. Ossenkopf V, Henning T. Dust opacities for protostellar cores. Astron Astrophys, 1994, 291: 943–959

    ADS  Google Scholar 

  34. Jφrgensen J K, Johnstone D, Kirk H, et al. Current star formation in the perseus molecular cloud: Constraints from unbiased submillimeter and mid-infrared surveys. Astrophys J, 2007, 656: 293–305

    Article  ADS  Google Scholar 

  35. Enoch M L, Evans II N J, Sargent A I, et al. Properties of the youngest protostars in Perseus, Serpens, and Ophiuchus. Astrophys J, 2009, 692: 973–997

    Article  ADS  Google Scholar 

  36. Evans, Harvey M M, Huard T L, et al. Final delivery of data from the c2d legacy project: IRAC and MIPS. Pasadena, CA: SSC, 2007

    Google Scholar 

  37. Lomax O D. Simulations of Star Formation in Ophiuchus. Dissertation for the Doctoral Degree. Wales, UK: Cardiff University, 2013

    Google Scholar 

  38. Sadavoy S I, Di Francesco J, Johnstone D. ”Starless” Super-Jeans cores in four gould belt clouds. Astrophys J, 2010, 718: L32–L37

    Article  ADS  Google Scholar 

  39. Scalo J. Fifty years of IMF variation: The intermediate-mass stars. Astrophys Space Sci Library, 2005, 327: 23–40

    Article  ADS  Google Scholar 

  40. Salpeter E E. The luminosity function and stellar evolution. Astrophys J, 1955, 121: 161–167

    Article  ADS  Google Scholar 

  41. Miller G, Scalo J. The initial mass function and stellar birthrate in the solar neighborhood. Astrophys J Suppl Ser, 1979, 41: 513–547

    Article  ADS  Google Scholar 

  42. Kroupa P. On the variation of the initial mass function. Mon Not R Astron Soc, 2001, 322: 231–246

    Article  ADS  Google Scholar 

  43. Chabrier G. Galactic stellar and substellar initial mass function. Publ Astron Soc Pac, 2003, 115: 763–795

    Article  ADS  Google Scholar 

  44. Olmi L, Anglés-Alcázar D, Elia D, et al. On the shape of the massfunction of dense clumps in the Hi-GAL fields. I. Spectral energy distribution determination and global properties of the mass-functions. Astron Astrophys, 2013, 551: A111

    Article  ADS  Google Scholar 

  45. Clark P C, Klessen R S, Bonnell I A. Clump lifetimes and the initial mass function. Mon Not R Astron Soc, 2007, 379: 57–62

    Article  ADS  Google Scholar 

  46. McKee C F, Offner S S R. The protostellar mass function. Astrophys J, 2010, 716: 167–180

    Article  ADS  Google Scholar 

  47. Ballesteros-Paredes J, Klessen R S. Molecular cloud turbulence and star formation. Protostars and Planets V. Reipurth B, Jewitt D, Keil K, eds. Tucson, Arizona: The University of Arizona Press, 2007

  48. McKee C, Ostriker, E. Theory of star formation. Annu Rev Astron Astrophys, 2012, 45: 565–687

    Article  ADS  Google Scholar 

  49. Joos M, Hennebelle P, Ciardi A, et al. The influence of turbulence during magnetized core collapse and its consequences on low-mass star formation. Astron Astrophys, 2013, 554: A17

    Article  ADS  Google Scholar 

  50. Chabrier G, Hennebelle P. Dimensional argument for the impact of turbulent support on the stellar initial mass function. Astron Astrophys, 2011, 534: A106

    Article  ADS  Google Scholar 

  51. Federrath C, Klessen R S. The star formation rate of turbulent magnetized clouds: comparing theory, simulations, and observations. Astrophys J, 2012, 761: 156

    Article  ADS  Google Scholar 

  52. Vázquez-Semadeni E. Hierarchical structure in nearly pressureless flows as a consequence of self-similar statistics. Astrophys J, 1994, 423: 681–692

    Article  ADS  Google Scholar 

  53. Klessen R S. The formation of stellar clusters: Mass spectra from turbulent molecular cloud fragmentation. Astrophys J, 2001, 556: 837–846

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Li, D., Hyde, A.K. et al. 350 μm map of the Ophiuchus molecular cloud: core mass function. Sci. China Phys. Mech. Astron. 58, 1–11 (2015). https://doi.org/10.1007/s11433-014-5561-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5561-7

Keywords

Navigation