Skip to main content
Log in

Interaction between strain and vorticity in compressible turbulent boundary layer

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The interaction of strain and vorticity in compressible turbulent boundary layers at Mach number 2.0 and 4.9 is studied by direct numerical simulation (DNS) of the compressible Navier-Stokes equations. Some fundamental characteristics have been studied for both the enstrophy producing and destroying regions. It is found that large enstrophy production is associated with high dissipation and high enstrophy, while large enstrophy destruction with moderate ones. The enstrophy production and destruction are also correlated with the dissipation production and destruction. Moreover, the enstrophy producing region has a distinct tendency to be ‘sheet-like’ structures and the enstrophy destroying region tends to be ‘tube-like’ in the inner layer. Correspondingly, the tendency to be ‘sheet-like’ or ‘tube-like’ structures is no longer obvious in the outer layer. Further, the alignment between the vorticity vector and the strain-rate eigenvector is analyzed in the flow topologies. It is noticed that the enstrophy production rate depends mainly on the alignment between the vorticity vector and the intermediate eigenvector in the inner layer, and the enstrophy production (destruction) mainly on the alignment between the vorticity vector and the extensive (compressive) eigenvector in the outer layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsinober A. Vortex stretching versus production of strain/dissipation. In: Hunt J C R, Vassilicos J C, eds. Turbulence Structure and Vortex Dynamics. Cambridge: Cambridge University Press, 2000. 164–191

    Google Scholar 

  2. Hamlington P E, Schumacher J, Dahm W J A. Direct assessment of vorticity alignment with local and non-local strain rates in turbulent flows. Phys Fluids, 2008, 20: 111703

    Article  ADS  Google Scholar 

  3. Buxton O R H, Ganapathisubramani B. Amplification of enstrophy in the far field of an axisymmetric turbulent jet. J Fluid Mech, 2010, 651: 483–502

    Article  MATH  Google Scholar 

  4. Taylor G T. Production and dissipation of vorticity in a turbulent fluid. Proc R Soc Lond A, 1938, 164: 15–23

    Article  ADS  MATH  Google Scholar 

  5. Tennekes H, Lumley J L. A First Course in Turbulence. Cambridge, MA: Massachusetts Institute of Technology Press, 1972

    Google Scholar 

  6. Jeong E, Girimaji S S. Velocity-gradient dynamics in turbulence: Effect of viscosity and forcing. Theor Comput Fluid Dyn, 2003, 16: 421–432

    Article  MATH  Google Scholar 

  7. Balint J L, Vukoslavcevic P, Wallace J M. The transport of enstrophy in a turbulent boundary layer. In: Kline S J, Afgan N, eds. Near Wall Turbulence. New York: Hemisphere Publishing Corp., 1990. 932–950

    Google Scholar 

  8. Balint J L, Wallace J M, Vukoslavcevic P. The velocity and vorticity vector fields of a turbulent boundary layer. Part 2. Statistical properties. J Fluid Mech, 1991, 228: 53–86

    ADS  Google Scholar 

  9. Honkan A, Andreopoulos Y. Vorticity, strain-rate and dissipation characteristics in the near-wall region of turbulent boundary layers. J Fluid Mech, 1997, 350: 29–96

    Article  ADS  MathSciNet  Google Scholar 

  10. Erlebacher G, Sarkar S. Statistical analysis of the rate of strain tensor in compressible homogeneous turbulence. Phys Fluids A, 1993, 5(12): 3240–3254

    Article  ADS  MATH  Google Scholar 

  11. Pirozzoli S, Grassso F. Direct numerical simulations of isotropic compressible turbulence: Influence of compressibility on dynamics and structures. Phys Fluids, 2004, 16(12): 4386–4407

    Article  ADS  Google Scholar 

  12. Pirozzoli S, Bernardini M, Grasso F. On the dynamical relevance of coherent vortical structures in turbulent boundary layers. J Fluid Mech, 2010, 648: 325–349

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Betchov R J. An inequality concerning the production of vorticity in isotropic turbulence. J Fluid Mech, 1956, 1: 497–504

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Tsinober A, Kit E, Dracos T. Experimental investigation of the field of velocity gradients in turbulent flows. J Fluid Mech, 1992, 242: 169–192

    Article  ADS  Google Scholar 

  15. Kida S, Orszag S A. Enstrophy budget in decaying compressible turbulence. J Sci Comput, 1990, 5(1): 1–34

    Article  MATH  MathSciNet  Google Scholar 

  16. Tsinober A, Ortenberg M, Shtillman L. On depression of non-linearity in turbulence. Phys Fluids, 1999, 11(8): 2291–2297

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Guala M, Liberzon A, Tsinober A, et al. An experimental investigation on Lagrangian correlations of small-scale turbulence at low Reynolds number. J Fluid Mech, 2007, 574: 405–427

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Xanthos S, Gong M W, Andreopoulos Y. Interaction of weakly compressible isotropic turbulence with planar expansion waves: Flow anisotropy and vorticity alignment. Phys Fluids, 2010, 22: 015111

    Article  ADS  Google Scholar 

  19. Ashurst WT, Kerstein A R, Kerr R M, et al. Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence. Phys Fluids, 1987, 30(8): 2343–2353

    Article  ADS  Google Scholar 

  20. Vincent A, Meneguzzi M. The spatial and statistical properties of homogeneous turbulence. J Fluid Mech, 1991, 225: 1–20

    Article  ADS  MATH  Google Scholar 

  21. Vincent A, Meneguzzi M. The dynamics of vorticity tubes in homogeneous turbulence. J Fluid Mech, 1994, 258: 245–254

    Article  ADS  MATH  Google Scholar 

  22. Lüthi B, Tsinober A, Kinzelbach W. Lagrangian measurement of vorticity dynamics in turbulent flow. J Fluid Mech, 2005, 528: 87–118

    Article  ADS  MATH  Google Scholar 

  23. Sondergaard R, Chen J H, Soria J, et al. Local topology of small scale motions in turbulent shear flows. In: Proc. Eighth Symposium on Turbulent Shear Flows. Munich, 1991

    Google Scholar 

  24. Tanahashi M, Iwase S, Miyauchi T. Appearance and alignment with strain rate of coherent fine scale eddies in turbulent mixing layer. J Turbul, 2001, 2(6): 1–17

    ADS  MathSciNet  Google Scholar 

  25. Blackburn H M, Mansour N, Cantwell B J. Topology of fine-scale motions in turbulent channel flow. J Fluid Mech, 1996, 301: 269–292

    Article  ADS  MathSciNet  Google Scholar 

  26. Tao B, Katz J, Meneveau C. Geometry and scale relationships in high Reynolds number turbulence determined from three-dimensional holographic velocimetry. Phys Fluids, 2000, 12(5): 941–944

    Article  ADS  MATH  Google Scholar 

  27. Tao B, Katz J, Meneveau C. Statistical geometry of subgrid-scale stresses determined from holographic particle image velocimetry measurements. J Fluid Mech, 2002, 457: 35–78

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Gulitski G, Kholmyansky M, Kinzelbach W, et al. Velocity and temperature derivatives in high-Reynolds-number turbulent flows in the atmospheric surface layer. Part 1. Facilities, methods and some general results. J Fluid Mech, 2007, 589: 57–81

    ADS  MATH  Google Scholar 

  29. Mullin J A, Dahm WJ A. Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow. II. Experimental results. Phys Fluids, 2006, 18: 035102

    Article  ADS  Google Scholar 

  30. Ganapathisubramani B, Clemens N T. Investigation of three-dimensional structure of fine scales in a turbulent jet by using cinematographic stereoscopic particle image velocimetry. J Fluid Mech, 2008, 598: 141–175

    Article  ADS  MATH  Google Scholar 

  31. Lee K, Girimaji S S, Kerimo J. Effect of compressibility on turbulent velocity gradients and small-scale structure. J Turbul, 2009, 10(9): 1–18

    ADS  Google Scholar 

  32. Jimenéz J. Kinematic alignment effects in turbulent flows. Phys Fluids A, 1992, 4(4): 652–654

    Article  ADS  Google Scholar 

  33. Nomura K K, Post G K. The structure and dynamics of vorticity and rate of strain in incompressible homogeneous turbulence. J Fluid Mech, 1998, 377: 65–97

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Andreotti B, Douady S, Couder Y. An experiment on two aspects of the interaction between strain and vorticity. J Fluid Mech, 2001, 444: 151–174

    Article  ADS  MATH  Google Scholar 

  35. Elsinga G E, Marusic I. Universal aspects of small-scale motions in turbulence. J Fluid Mech, 2010, 662: 514–539

    Article  MATH  Google Scholar 

  36. Tsinober A, Shtilman L, Vaisburd H. A study of properties of vortex stretching and enstrophy generation in numerical and laboratory turbulence. Fluid Dyn Res, 1997, 21: 477–494

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Kholmyansky M, Tsinober A, Yorish S. Velocity derivatives in the atmospheric surface layer at Re λ = 104. Phys Fluids, 2001, 13(1): 311–314

    Article  ADS  Google Scholar 

  38. Perry A E, Chong M S. A description of eddying motions and flow patterns using critical-point concepts. Annu Rev Fluid Mech, 1987, 19: 125–155

    Article  ADS  Google Scholar 

  39. Chong M S, Perry A E, Cantwell B J. A general classification of three-dimensional flow fields. Phys Fluids A, 1990, 2(5): 765–777

    Article  ADS  MathSciNet  Google Scholar 

  40. Chevillard L, Meneveau C, Biferale L, et al. Modeling the pressure Hessian and viscous Laplacian in turbulence: Comparisons with direct numerical simulation and implications on velocity gradient dynamics. Phys Fluids, 2008, 20: 101504

    Article  ADS  Google Scholar 

  41. Wang L, Lu X Y. Flow topology in compressible turbulent boundary layer. J Fluid Mech, 2012, 703: 255–278

    Article  MATH  MathSciNet  Google Scholar 

  42. Duan L, Beekman I, Martín M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number. J Fluid Mech, 2011, 672: 245–267

    Article  ADS  MATH  Google Scholar 

  43. Horiuti K, Takagi Y. Identification method for vortex sheet structures in turbulent flows. Phys Fluids, 2005, 17: 121703

    Article  ADS  Google Scholar 

  44. Zhou J, Adrian R J, Balachandar S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech, 1999, 387: 353–396

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiYun Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, Y., Wang, L. & Lu, X. Interaction between strain and vorticity in compressible turbulent boundary layer. Sci. China Phys. Mech. Astron. 57, 2316–2329 (2014). https://doi.org/10.1007/s11433-014-5530-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5530-1

Keywords

Navigation