Skip to main content
Log in

Continuum damage mechanics for sintered powder metals

  • Article
  • Solid Mechanics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Sintered metals are characterized by the high porosity (⩾ 8%) and voids/micro-cracks in microns. Inelastic behavior of the materials is coupled with micro-crack propagation and coalescence of open voids. In the present work the damage evolution of the sintered iron under multi-axial monotonic loading conditions was investigated experimentally and computationally. The tests indicated that damage of the sintered iron initiated already at a stress level much lower than the macroscopic yield stress. The damage process can be divided into the stress-dominated elastic damage and the plastic damage described by the plastic strain. Based on the uniaxial tensile tests an elastic-plastic continuum damage model was developed which predicts both elastic damage and plastic damage in the sintered iron under general multi-axial monotonic loading conditions. Computational predictions agree with experiments with different multi-axial loading paths. A phenomenological continuum damage model for the sintered metal is developed based on the experimental observations to predict the inelastic behavior and damage process to failure under multi-axial loading conditions. The proposed damage model is experimentally verified under different loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sonsino C M. Fatigue design principles for sintered steel components. J Strain Anal Eng Des, 2006, 41(7): 497–555

    Article  Google Scholar 

  2. Sonsino C M. Zukunftsperspektiven für die Pulvermetallurgie durch die Betriebsfestigkeit. Materialwissenschaft Werkstofftechnik, 2006, 37(3): 240–248

    Article  Google Scholar 

  3. Schneider M, Yuan H. Experimental and computational investigation of cyclic mechanical behavior of sintered iron. Comput Mater Sci, 2012, 57: 48–58

    Article  Google Scholar 

  4. Zafari A, Beiss P. Effect of tensile mean stresses on fatigue strength of fe-cu-c steels in as-sintered and heat treated conditions. Powder Metall Prog, 2008, 8(3): 200–209

    Google Scholar 

  5. Chen J, Yuan H, Schneider M. Investigation of micromechanical deformation mechanisms in sinter powder metals. Adv Mater Res, 2013, 668: 351–355

    Article  Google Scholar 

  6. Carabajar S, Verdu C, Fougeres R. Damage mechanisms of a nickel alloyed sintered steel during tensile tests. Mater Sci Eng A, 1997, 232(1–2): 80–87

    Article  Google Scholar 

  7. Kabatova M, Dudrova E, Wronski S. Microcrack nucleation, growth, coalescence and propagation in the fatigue failure of a powder metallurgy steel. Fatigue Fracture Eng Mater Struct, 2009, 32(3): 214–222

    Article  Google Scholar 

  8. Straffelini G, Molinari A. Evolution of tensile damage in porous iron. Mater Sci Eng A, 2002, 334(1–2): 96–103

    Article  Google Scholar 

  9. Chawla N, Jester B, Vonk D. Bauschinger effect in porous sintered steels. Mater Sci Eng A, 2003, 346(1–2): 266–272

    Article  Google Scholar 

  10. Chawla N, Deng X. Microstructure and mechanical behavior of porous sintered steels. Mater Sci Eng A, 2005, 390(1–2): 98–112

    Article  Google Scholar 

  11. Besson J. Continuum models of ductile fracture: A review. Int J Damage Mech, 2010, 19(1): 3–52

    Article  Google Scholar 

  12. Li H, Fu M, Lu J, et al. Ductile fracture: Experiments and computations. Int J Plast, 2011, 27(2): 147–180

    Article  Google Scholar 

  13. Kintzel O, Khan S, Mosler J. A novel isotropic quasi-brittle damage model applied to LCF analyses of Al2024. Int J Fatigue, 2010, 32(12): 1948–1959

    Article  Google Scholar 

  14. Pan X, Yuan H. Computational algorithms and applications of elementfree Galerkin methods for nonlocal damage models. Eng Fracture Mech, 2010, 77: 2640–2653

    Article  Google Scholar 

  15. Yuan H, Chen J, Krompholz K, et al. Investigations of size effects in tensile tests based on a nonlocal micro-mechanical damage model. Comput Mater Sci, 2003, 26: 230–243

    Article  Google Scholar 

  16. Chow C, Jie M. Anisotropic damage-coupled sheet metal forming limit analysis. Int J Damage Mech, 2008, 18(4): 371–392

    Article  Google Scholar 

  17. Lemaitre J, Desmorat R. Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures. Berlin: Springer-Verlag, 2005

    Google Scholar 

  18. Voyiadjis G Z, Kattan P I. A comparative study of damage variables in continuum damage mechanics. Int J Damage Mech, 2008, 18(4): 315–340

    Article  Google Scholar 

  19. Abu Al-Rub R K, Kim S-M. Computational applications of a coupled plasticity-damage constitutive model for simulating plain concrete fracture. Eng Fracture Mech, 2010, 77(10): 1577–1603

    Article  Google Scholar 

  20. Desmorat R, Cantournet S. Modeling microdefects closure effect with isotropic/anisotropic damage. Int J Damage Mech, 2007, 17(1): 65–96

    Article  Google Scholar 

  21. Voyiadjis G Z, Taqieddin Z N, Kattan P I. Anisotropic damage-plasticity model for concrete. Int J Plast, 2008, 24(10): 1946–1965

    Article  MATH  Google Scholar 

  22. Lemaitre J. A Course on Damage Mechanics. Berlin: Springer-Verlag, 1996

    Book  MATH  Google Scholar 

  23. Schneider M, Yuan H. Experimental and computational investigation of cyclic mechanical behavior and damage evolution of Distaloy AE + 0.5. Powder Metall Prog, 2011, 11: 141–148

    Google Scholar 

  24. Lubliner J. Plasticity Theory. San Antonio, TX: Pearson Education, Inc., 1990

    MATH  Google Scholar 

  25. Chaboche J L, Boudifa M, Saanouni K. A CDM approach of ductile damage with plastic compressibility. Int J Fracture, 2006, 137(1–4): 51–75

    Article  MATH  Google Scholar 

  26. Pirondi A, Bonora N, Steglich D, et al. Simulation of failure under cyclic plastic loading by damage models. Int J Plast, 2006, 22(11): 2146–2170

    Article  MATH  Google Scholar 

  27. Shao J, Jia Y, Kondo D, et al. A coupled elastoplastic damage model for semi-brittle materials and extension to unsaturated conditions. Mech Mater, 2006, 38(3): 218–232

    Article  Google Scholar 

  28. Bonora N, Gentile D, Pirondi A, et al. Ductile damage evolution under triaxial state of stress: Theory and experiments. Int J Plast, 2005, 21(5): 981–1007

    Article  MATH  Google Scholar 

  29. Cicekli U, Voyiadjis G Z, Abu Al-Rub R K. A plasticity and anisotropic damage model for plain concrete. Int J Plast, 2007, 23(10–1): 1874–1900

    Article  MATH  Google Scholar 

  30. Castagne S, Habraken A, Cescotto S. Application of a damage model to an aluminium alloy. Int J Damage Mech, 2003, 12(1): 5–30

    Article  Google Scholar 

  31. Kang G, Liu Y, Ding J, et al. Uniaxial ratcheting and fatigue failure of tempered 42CrMo steel: Damage evolution and damage-coupled viscoplastic constitutive model. Int J Plast, 2009, 25(5): 838–860

    Article  MATH  Google Scholar 

  32. Khan S, Kintzel O, Mosler J. Experimental and numerical lifetime assessment of Al 2024 sheet. Int J Fatigue, 2012, 37: 112–122

    Article  Google Scholar 

  33. Xue L, Wierzbicki T. Ductile fracture initiation and propagation modeling using damage plasticity theory. Eng Fracture Mech, 2008, 75(11): 3276–3293

    Article  Google Scholar 

  34. Bonora N. A nonlinear CDM model for ductile failure. Eng Fracture Mech, 1997, 58(1): 11–28

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huang Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, H., Ma, S. & Zhang, L. Continuum damage mechanics for sintered powder metals. Sci. China Phys. Mech. Astron. 58, 1–12 (2015). https://doi.org/10.1007/s11433-014-5529-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5529-7

Keywords

Navigation