Skip to main content
Log in

A novel stochastic collocation method for uncertainty propagation in complex mechanical systems

  • Article
  • Solid Mechanics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

This paper presents a novel stochastic collocation method based on the equivalent weak form of multivariate function integral to quantify and manage uncertainties in complex mechanical systems. The proposed method, which combines the advantages of the response surface method and the traditional stochastic collocation method, only sets integral points at the guide lines of the response surface. The statistics, in an engineering problem with many uncertain parameters, are then transformed into a linear combination of simple functions’ statistics. Furthermore, the issue of determining a simple method to solve the weight-factor sets is discussed in detail. The weight-factor sets of two commonly used probabilistic distribution types are given in table form. Studies on the computational accuracy and efforts show that a good balance in computer capacity is achieved at present. It should be noted that it’s a non-gradient and non-intrusive algorithm with strong portability. For the sake of validating the procedure, three numerical examples concerning a mathematical function with analytical expression, structural design of a straight wing, and flutter analysis of a composite wing are used to show the effectiveness of the guided stochastic collocation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jonas C, Sven OH, Fred N. Generalizing the safety factor approach. Reliab Eng Syst Safety, 2006, 91(8): 964–973

    Article  Google Scholar 

  2. Gerhart IS, Adriano C, Sebastiaan H J A F, et al. Uncertainty analysis of a large-scale satellite finite element model. J Spacecraft Rockets, 2009, 46(1): 191–202

    Article  Google Scholar 

  3. Stéphane T, Zheng W X, Marion G, et al. Unifying some higher-order statistic-based methods for errors-in-variables model identification. Automatica, 2009, 45(8): 1937–1942

    Article  MATH  MathSciNet  Google Scholar 

  4. M’hamed B, Driss A. Higher-order statistics based blind estimation of non-Gaussian bidimensional moving average models. Signal Processing, 2006, 86(10): 3031–3042

    Article  MATH  Google Scholar 

  5. Yu S N, Chen Y H. Noise-tolerant electrocardiogram beat classification based on higher order statistics of subband components. Artif Intell Med, 2009, 46(2): 165–178

    Article  Google Scholar 

  6. Cho H K, Rhee J. Vibration in a satellite structure with a laminate composite hybrid sandwich panel. Composite Struct, 2011, 93(10): 2566–2574

    Article  Google Scholar 

  7. Hong S K, Bogdan I E, Matthew P C, et al. Parametric reduced-order models for predicting the vibration response of complex structures with component damage and uncertainties. J Sound Vib, 2011, 330(6): 1091–1110

    Article  ADS  Google Scholar 

  8. Qiu Z Q, Xia Y Y, Yang J L. The static displacement and the stress analysis of structures with bounded uncertainties using the vertex solution theorem. Comput Methods Appl Mech Eng, 2007, 196(49–52): 4965–4984

    Article  ADS  MATH  Google Scholar 

  9. Knio O M, Maitre O P L. Uncertainty propagation in CFD using polynomial chaos decomposition. Fluid Dyn Res, 2006, 38(9): 616–640

    Article  ADS  MATH  Google Scholar 

  10. Loeven G J A, Witteveen J A S, Bijl H. Efficient uncertainty quantification in computational fluid-structure interactions. AIAA Paper, 2006, AIAA-2006-1634

    Google Scholar 

  11. Wang X J, Qiu Z P. Nonprobabilistic interval reliability analysis of wing flutter. AIAA J, 2009, 47(3): 743–748

    Article  ADS  MathSciNet  Google Scholar 

  12. Rippel M, Choi S K. Alternatives to Taylor series approximation for the variance estimation in robust design. AIAA Paper, 2010, AIAA-2010-9083

    Google Scholar 

  13. Qi W C, Qiu Z P. A collocation interval analysis method for interval structural parameters and stochastic excitation. Sci China-Phys Mech Astron, 2012, 55(1): 66–77

    Article  ADS  Google Scholar 

  14. Christos E P, Hoi Y. Uncertainty estimation and Monte Carlo simulation method. Flow Meas Instrum, 2001, 12(4): 291–298

    Article  Google Scholar 

  15. Herrador M A, Gonzalez A G. Evaluation of measurement uncertainty in analytical assays by means of Monte-Carlo simulation. Talanta, 2004, 64(2): 415–422

    Article  Google Scholar 

  16. Kamran S, Pooneh N. A new optimized uncertainty evaluation applied to the Monte-Carlo simulation in platinum resistance thermometer calibration. Measurement, 2010, 43(7): 901–911

    Article  Google Scholar 

  17. Kaveh M, Jay R L. A Monte-Carlo game theoretic approach for multi-criteria decision making under uncertainty. Adv Water Resour, 2011, 34(5): 607–616

    Article  Google Scholar 

  18. Abhishek H, Raktim B. Beyond Monte Carlo: A computational framework for uncertainty propagation in planetary entry, descent and landing. AIAA Paper, 2010, AIAA-2010-8029

    Google Scholar 

  19. Lu Z M, Zhang D X. On importance sampling Monte Carlo approach to uncertainty analysis for flow and transport in porous media. Adv Water Resour, 2003, 26(11): 1177–1188

    Article  ADS  Google Scholar 

  20. Marco B. Adaptive importance sampling for simulating copula-based distributions. Insurance Math Econom, 2011, 48(2): 237–245

    Article  MATH  MathSciNet  Google Scholar 

  21. Hans Janssen. Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence. Reliab Eng Syst Safety, 2013, 109: 123–132

    Article  Google Scholar 

  22. lmpollonia N, Sofi A. A response surface approach for the static analysis of stochastic structures with geometrical nonlinearities. Comput Methods Appl Mech Eng, 2003, 192(37–38): 4109–4129

    Article  Google Scholar 

  23. Li D Q, Chen Y F, Lu W B, et al. Stochastic response surface method for reliability analysis of rock slopes involving correlated non-normal variables. Comput Geotech, 2011, 38(1): 58–68

    Article  Google Scholar 

  24. Liu Y. Application of stochastic response surface method in the structural reliability. Procedia Eng, 2012, 28(2012): 661–664

    Article  ADS  Google Scholar 

  25. Xiu D B, Karniadakis G. The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput, 2002, 24(2): 619–644

    Article  MATH  MathSciNet  Google Scholar 

  26. Knio O M, Maitre O P. Uncertainty propagation in CFD using polynominal chaos decomposition. Fluid Dyn Res, 2006, 38(3): 616–640

    Article  ADS  MATH  Google Scholar 

  27. Field RV, Grigoriu M. On the accuracy of the polynomial chaos approximation. Probab Eng Mech, 2004, 19(1–2): 65–80

    Article  Google Scholar 

  28. Marc G, Jan-Bart S, Peter V, et al. Time-dependent generalized polynomial chaos. J Comput Phys, 2010, 229(22): 8333–8363

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Eduardo H S, Floriane A C, Michel B. Sensitivity study of dynamic systems using polynomial chaos. Reliab Eng Syst Safety, 2012, 104(2012): 15–26

    Google Scholar 

  30. Xiu D B, Hesthaven J S. High order collocation methods for the differential equations with random inputs. SIAM J Sci Comput, 2005, 27(3): 1118–1139

    Article  MATH  MathSciNet  Google Scholar 

  31. Lionel M, Hussaini M Y. A Stochastic Collocation Algorithm for Uncertainty Analysis. NASA/CR-2003-212153, 2003

    Google Scholar 

  32. Tang T, Zhou T. Convergence analysis for stochastic collocation methods to scalar hyperbolic equations with a random wave speed. Commun Comput Phys, 2010, 8: 226–248

    MathSciNet  Google Scholar 

  33. Motamed M, Nobile F, Tempone R. A stochastic collocation method for the second order wave equation with a discontinuous random speed. Numer Math, 2013, 123(3): 493–536

    Article  MATH  MathSciNet  Google Scholar 

  34. Marzouk Y, Xiu D. A stochastic collocation approach to bayesian inference in inverse problems. Commun Comput Phys, 2009, 6(4): 826–847

    Article  MathSciNet  Google Scholar 

  35. Aravind A, Aluru N R. Uncertainty quantification of MEMS using a data-dependent adaptive stochastic collocation method. Comput Methods Appl Mech Eng, 2011, 200(45–46): 3169–3182

    ADS  MATH  Google Scholar 

  36. Rahman S, Xu H. A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics. Probab Eng Mech, 2004, 19(4): 393–408

    Article  Google Scholar 

  37. Wei D, Rahman S. A multi-point univariate decomposition method for structural reliability analysis. Int J Pressure Vessels Piping, 2010, 87(5): 220–229

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WuChao Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, W., Tian, S. & Qiu, Z. A novel stochastic collocation method for uncertainty propagation in complex mechanical systems. Sci. China Phys. Mech. Astron. 58, 1–8 (2015). https://doi.org/10.1007/s11433-014-5525-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5525-y

Keywords

Navigation