Science China Physics, Mechanics & Astronomy

, Volume 57, Issue 6, pp 1038–1045 | Cite as

Plasmonic-enhanced two-photon fluorescence with single gold nanoshell

  • TianYue Zhang
  • GuoWei Lu
  • HongMing Shen
  • P. Perriat
  • M. Martini
  • O. Tillement
  • QiHuang Gong


Single gold nanoshell with mutilpolar plasmon resonances is proposed to enhance two-photon fluorescence efficiently. The single emitter single nanoshell configuration is studied systematically by employing the finite-difference time-domain method. The emitter located inside or outside the nanoshell at various positions leads to a significantly different enhancement effect. The fluorescent emitter placed outside the nanoshell can achieve large fluorescence intensity given that both the position and orientation of the emission dipole are optimally controlled. In contrast, for the case of the emitter placed inside the nanoshell, it can experience substantial two-photon fluorescence enhancement without strict requirements upon the position and dipole orientations. Metallic nanoshell encapsulating many fluorescent emitters should be a promising nanocomposite configuration for bright two-photon fluorescence label. The results provide a comprehensive understanding about the plasmonic-enhanced two-photon fluorescence behaviors, and the nanocomposite configuration has great potential for optical detecting, imaging and sensing in biological applications.


surface plasmon resonances two-photon fluorescence finite-difference time-domain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods, 2005, 2(12): 932–940CrossRefGoogle Scholar
  2. 2.
    So P T C, Dong C Y, Masters B R, et al. Two-photon excitation fluorescence microscopy. Annu Rev Biomed Eng, 2000, 2: 399–429CrossRefGoogle Scholar
  3. 3.
    Yao S, Belfield K D. Two-photon fluorescent probes for bioimaging. Eur J Org Chem, 2012, 2012(17): 3199–3217CrossRefGoogle Scholar
  4. 4.
    Santra S, Malhotra A. Fluorescent nanoparticle probes for imaging of cancer. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2011, 3(5): 501–510Google Scholar
  5. 5.
    Larson D R, Zipfel W R, Williams R M, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science, 2003, 300: 1434–1436CrossRefADSGoogle Scholar
  6. 6.
    Yong K T, Qian J, Roy I, et al. Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells. Nano Lett, 2007, 7(3): 761–765CrossRefADSGoogle Scholar
  7. 7.
    Jung J M, Yoo H W, Stellacci F, et al. Two-photon excited fluorescence enhancement for ultrasensitive DNA detection on large-area gold nanopatterns. Adv Mater, 2010, 22(23): 2542–2546CrossRefGoogle Scholar
  8. 8.
    Fischer J, Bocchio N, Unger A, et al. Near-field-mediated enhancement of two-photon-induced fluorescence on plasmonic nanostructures. J Phys Chem C, 2010, 114(49): 20968–20973CrossRefGoogle Scholar
  9. 9.
    Hartling T, Reichenbach P, Eng L M. Near-field coupling of a single fluorescent molecule and a spherical gold nanoparticle. Opt Express, 2007, 15(20): 12806–12817CrossRefADSGoogle Scholar
  10. 10.
    Lakowicz J R. Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics, 2006, 1(1): 5–33CrossRefGoogle Scholar
  11. 11.
    Fu Y, Zhang J, Lakowicz J R. Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods. J Am Chem Soc, 2010, 132(16): 5540–5541CrossRefGoogle Scholar
  12. 12.
    Swierczewska M, Lee S, Chen X Y. The design and application of fluorophore-gold nanoparticle activatable probes. Phys Chem Chem Phys, 2011, 13(21): 9929–9941CrossRefGoogle Scholar
  13. 13.
    Moroz A. Spectroscopic properties of a two-level atom interacting with a complex spherical nanoshell. Chem Phys, 2005, 317(1): 1–15CrossRefADSGoogle Scholar
  14. 14.
    Guzatov D V, Klimov V V. Radiative decay engineering by triaxial nanoellipsoids. Chem Phys Lett, 2005, 412(4–6): 341–346CrossRefADSGoogle Scholar
  15. 15.
    Girard C, Martin O J F, Leveque G, et al. Generalized bloch equations for optical interactions in confined geometries. Chem Phys Lett, 2005, 404(1–3): 44–48CrossRefADSGoogle Scholar
  16. 16.
    Wenger J, Gerard D, Dintinger J, et al. Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures. Opt Express, 2008, 16(5): 3008–3020CrossRefADSGoogle Scholar
  17. 17.
    Tian X, Tong L, Xu H. New progress of plasmonics in complex metal nanostructures. Sci China-Phys Mech Astron, 2013, 56(12): 2327–2336CrossRefADSGoogle Scholar
  18. 18.
    Zheng H, Xu L, Zhang Z, et al. Fluorescence enhancement of acridine orange in a water solution by Au nanoparticles. Sci China-Phys Mech Astron, 2010, 53(10): 1799–1804CrossRefADSGoogle Scholar
  19. 19.
    Oldenburg S J, Averitt R D, Westcott S L, et al. Nanoengineering of optical resonances. Chem Phys Lett, 1998, 288(2–4): 243–247CrossRefADSGoogle Scholar
  20. 20.
    Lal S, Link S, Halas N J. Nano-optics from sensing to waveguiding. Nat Photonics, 2007, 1(11): 641–648CrossRefADSGoogle Scholar
  21. 21.
    Zhou X, Fang J, Liao X, et al. Influence of structural defects on the optical properties of strongly coupled Au nanoshell arrays. Sci China-Phys Mech Astron, 2013, 56(9): 1664–1669CrossRefADSGoogle Scholar
  22. 22.
    West J L, Halas N J. Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics. Annu Rev Biomed Eng, 2003, 5: 285–292CrossRefGoogle Scholar
  23. 23.
    Hirsch L R, Jackson J B, Lee A, et al. A whole blood immunoassay using gold nanoshells. Anal Chem, 2003, 75(10): 2377–2381CrossRefGoogle Scholar
  24. 24.
    Loo C, Lowery A, Halas N J, et al. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett, 2005, 5(4): 709–711CrossRefADSGoogle Scholar
  25. 25.
    Tam F, Goodrich G P, Johnson B R, et al. Plasmonic enhancement of molecular fluorescence. Nano Lett, 2007, 7(2): 496–501CrossRefADSGoogle Scholar
  26. 26.
    Jin Y D, Gao X H. Plasmonic fluorescent quantum dots. Nat Nanotechnol, 2009, 4(9): 571–576CrossRefADSGoogle Scholar
  27. 27.
    Zaiba S, Lerouge F, Gabudean A M, et al. Transparent plasmonic nanocontainers protect organic fluorophores against photobleaching. Nano Lett, 2011, 11(5): 2043–2047CrossRefADSGoogle Scholar
  28. 28.
    Zhang J, Gryczynski I, Gryczynski Z, et al. Dye-labeled silver nanoshell-bright particle. J Phys Chem B, 2006, 110(18): 8986–8991CrossRefGoogle Scholar
  29. 29.
    Bardhan R, Grady N K, Halas N J. Nanoscale control of near-infrared fluorescence enhancement using Au nanoshells. Small, 2008, 4(10): 1716–1722CrossRefGoogle Scholar
  30. 30.
    Enderlein J. Theoretical study of single molecule fluorescence in a metallic nanocavity. Appl Phys Lett, 2002, 80(2): 315–317CrossRefADSGoogle Scholar
  31. 31.
    Miao X Y, Brener I, Luk T S. Nanocomposite plasmonic fluorescence emitters with core/shell configurations. J Opt Soc Am B, 2010, 27(8): 1561–1570CrossRefADSGoogle Scholar
  32. 32.
    Zhang T, Lu G, Li W, et al. Optimally designed nanoshell and matryoshka-nanoshell as a plasmonic-enhanced fluorescence probe. J Phys Chem C, 2012, 116(15): 8804–8812CrossRefGoogle Scholar
  33. 33.
    Taflove A, Hagness S C. Computational Electrodynamics: The Finite-Difference Time-Domain Method. 3rd ed. Boston: Artech House, 2005Google Scholar
  34. 34.
    Mohammadi A, Kaminski F, Sandoghdar V, et al. Fluorescence enhancement with the optical (bi-) conical antenna. J Phys Chem C, 2010, 114(16): 7372–7377CrossRefGoogle Scholar
  35. 35.
    Johnson P B, Christy R W. Optical constants of noble metals. Phys Rev B, 1972, 6(12): 4370–4379CrossRefADSGoogle Scholar
  36. 36.
    Zhang T, Lu G, Liu J, et al. Strong two-photon fluorescence enhanced jointly by dipolar and quadrupolar modes of a single plasmonic nanostructure. Appl Phys Lett, 2012, 101(5): 051109CrossRefMathSciNetADSGoogle Scholar
  37. 37.
    Munechika K, Chen Y, Tillack A F, et al. Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms. Nano Lett, 2010, 10(7): 2598–2603CrossRefADSGoogle Scholar
  38. 38.
    Pompa P P, Martiradonna L, Della Torre A, et al. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat Nanotech, 2006, 1(2): 126–130CrossRefADSGoogle Scholar
  39. 39.
    Oldenburg S J, Jackson J B, Westcott S L, et al. Infrared extinction properties of gold nanoshells. Appl Phys Lett, 1999, 75(19): 2897–2899CrossRefADSGoogle Scholar
  40. 40.
    Buschmann V, Weston K D, Sauer M. Spectroscopic study and evaluation of red-absorbing fluorescent dyes. Bioconjugate Chem, 2003, 14(1): 195–204CrossRefGoogle Scholar
  41. 41.
    Liu M, Lee T W, Gray S, et al. Excitation of dark plasmons in metal nanoparticles by a localized emitter. Phys Rev Lett, 2009, 102(10): 107401CrossRefADSGoogle Scholar
  42. 42.
    Zhang Y, Grady N K, Ayala-Orozco C, et al. Three-dimensional nanostructures as highly efficient generators of second harmonic light. Nano Lett, 2011, 11(12): 5519–5523CrossRefADSGoogle Scholar
  43. 43.
    Palomba S, Novotny L. Near-field imaging with a localized nonlinear light source. Nano Lett, 2009, 9(11): 3801–3804CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • TianYue Zhang
    • 1
  • GuoWei Lu
    • 1
  • HongMing Shen
    • 1
  • P. Perriat
    • 2
  • M. Martini
    • 3
  • O. Tillement
    • 3
  • QiHuang Gong
    • 1
    • 4
  1. 1.State Key Laboratory for Mesoscopic Physics, Department of PhysicsPeking UniversityBeijingChina
  2. 2.Matériaux, Ingénierie et Sciences (MATEIS), UMR 5510 CNRS, INSA-LyonUniversité de LyonVilleurbanne CedexFrance
  3. 3.CNRS Laboratory of Physio-Chemistry of Luminescent Materials, Université de LyonUniversité Claude BernardVilleurbanne CedexFrance
  4. 4.Collaborative Innovation Center of Quantum MatterBeijingChina

Personalised recommendations