Skip to main content

Drag reduction in turbulent channel flow using bidirectional wavy Lorentz force

Abstract

Turbulent control and drag reduction in a channel flow via a bidirectional traveling wave induced by spanwise oscillating Lorentz force have been investigated in the paper. The results based on the direct numerical simulation (DNS) indicate that the bidirectional wavy Lorentz force with appropriate control parameters can result in a regular decline of near-wall streaks and vortex structures with respect to the flow direction, leading to the effective suppression of turbulence generation and significant reduction in skin-friction drag. In addition, experiments are carried out in a water tunnel via electro-magnetic (EM) actuators designed to produce the bidirectional traveling wave excitation as described in calculations. As a result, the actual substantial drag reduction is realized successfully in these experiments.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Xu C X, Deng B Q, Huang W X, et al. Coherent structures in wall turbulence and mechanism for drag reduction control. Sci China-Phys Mech Astron, 2013, 56(6): 1053–1061

    Article  ADS  Google Scholar 

  2. 2

    Sun Z S, Ren Y X, Larricq C. Drag reduction of compressible wall turbulence with active dimples. Sci China-Phys Mech Astron, 2011, 54(2): 329–337

    Article  ADS  Google Scholar 

  3. 3

    Kim J, Moin P, Moser R. Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech, 1987, 177: 133–166

    Article  MATH  ADS  Google Scholar 

  4. 4

    Ge M W, Xu C X, Cui G X. Transient response of Reynolds stress transport to opposition control in turbulent channel flow. Sci China-Phys Mech Astron, 2011, 54(2): 320–328

    Article  ADS  Google Scholar 

  5. 5

    Huang L P, Fan B C, Dong G. Turbulent drag reduction via a transverse wave traveling along streamwise direction induced by Lorentz force. Phys Fluids, 2010, 22(1): 015103

    Article  ADS  Google Scholar 

  6. 6

    Berger T W, Kim J, Lee C, et al. Turbulent boundary layer control utilizing the Lorentz force. Phys Fluids, 2000, 12(3): 631–649

    Article  MATH  ADS  Google Scholar 

  7. 7

    Lee C, Kim J. Control of the viscous sublayer for drag reduction. Phys Fluids, 2002, 14(7): 2523–2529

    Article  ADS  Google Scholar 

  8. 8

    Du Y Q, Symeonidis V, Karniadakis G E. Drag reduction in wall-bounded turbulence via a transverse travelling wave. J Fluid Mech, 2002, 457: 1–34

    MathSciNet  Article  MATH  ADS  Google Scholar 

  9. 9

    Satake S, Kasagi N. Turbulence control with wall-adjacent thin layer damping spanwise velocity fluctuations. Int J Heat Fluid Flow, 1996, 17(3): 343–352

    Article  Google Scholar 

  10. 10

    Pang J, Choi K S. Turbulent drag reduction by Lorentz force oscillation. Phys Fluids, 2004, 16(5): 35–38

    Article  ADS  Google Scholar 

  11. 11

    Mei D J, Fan B C, Huang L P, et al. Drag reduction in turbulent channel flow utilizing spanwise oscillating Lorentz force (in Chinese). Atca Phys Sin, 2010, 59(10): 6786–6792

    Google Scholar 

  12. 12

    Mei D J, Fan B C, Chen Y H, et al. Experimental investigation in turbulent channel flow utilizing spanwise oscillating Lorentz force (in Chinese). Atca Phys Sin, 2010, 59(12): 8335–8342

    Google Scholar 

  13. 13

    Du Y Q, Karniadakis G E. Suppressing wall-turbulence by means of a transverse traveling wave. Science, 2000, 288: 1230–1234

    Article  ADS  Google Scholar 

  14. 14

    Xu P, Choi K S. Boundary layer control for drag reduction by Lorentz forcing. In: Proceedings of Flow Control and MEMS. Berlin: Springer, 2007. 259–265

    Google Scholar 

  15. 15

    Canuto C, Hussaini M Y, Quarteroni A, et al. Spectral Methods in Fluid Dynamics. New York: Springer-Verlag, 1988. 201–212

    Book  MATH  Google Scholar 

  16. 16

    Huang W X, Xu C X, Cui G X, et al. Mechanism of drag reduction by spanwise wall oscillation in turbulent channel flow (in Chinese). Chin J Theor Appl Mech, 2004, 36(1): 24–30

    Google Scholar 

  17. 17

    Huang L P, Fan B C, Dong G. Turbulent drag reduction via a streamwise traveling wave induced by spanwise wall oscillation (in Chinese). Chin J Theor Appl Mech, 2011, 43(2): 277–281

    Google Scholar 

  18. 18

    Zhou J, Adrian R J, Balachandar S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech, 1999, 387: 353–396

    MathSciNet  Article  MATH  ADS  Google Scholar 

  19. 19

    Choi K S, Clayton B R. The Mechanism of turbulent drag reduction with wall oscillation. Int J Heat Fluid Flow, 2001, 22: 1–9

    Article  Google Scholar 

  20. 20

    Kim J. Turbulence structures associated with the bursting event. Phys Fluids, 1985, 28(1): 52–58

    Article  ADS  Google Scholar 

  21. 21

    Zhao H, Wu J Z, Luo J S. Turbulent drag reduction by traveling wave of flexible wall. Fluid Dyn Res, 2004, 34: 175–198

    Article  MATH  ADS  Google Scholar 

  22. 22

    Huang L P, Fan B C, Mei D J. Mechanism of drag reduction by spanwise oscillating Lorentz force in turbulent channel flow. Theor Appl Mech Lett, 2012, 2(1): 012005

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to KwingSo Choi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Choi, K., Fan, B. et al. Drag reduction in turbulent channel flow using bidirectional wavy Lorentz force. Sci. China Phys. Mech. Astron. 57, 2133–2140 (2014). https://doi.org/10.1007/s11433-014-5416-2

Download citation

Keywords

  • turbulence control
  • direct numerical simulation
  • channel flow
  • Lorentz force
  • drag reduction