Recent advances on “ordered water monolayer that does not completely wet water” at room temperature

  • ChunLei Wang
  • YiZhou Yang
  • HaiPing FangEmail author
Review Special Topic: Water Science


The molecular scales behavior of interfacial water at the solid/liquid interfaces is of a fundamental significance in a diverse set of technical and scientific contexts, ranging from the efficiency of oil mining to the activity of biological molecules. Recently, it has become recognized that, both the physical interactions and the surface morphology have significant impact on the behavior of interfacial water, including the water structures as well as the wetting properties of the surface. In this review, we summarize some of recent advances in the atom-level pictures of the interfacial water, which exhibits the ordered character on various solid surfaces at room or cryogenic temperature. Special focus has been devoted to the wetting phenomenon of “ordered water monolayer that does not completely wet water” and the underlying mechanism on model and some real solid surfaces at room temperature. The possible applications of this phenomenon are also discussed.


ordered water monolayer hydrophobicity/hydrophilicity molecular dynamics simulation hydrogen bond room temperature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chandler D. Interfaces and the driving force of hydrophobic assembly. Nature, 2005, 437: 640–647ADSCrossRefGoogle Scholar
  2. 2.
    Lum K, Chandler D, Weeks J D. Hydrophobicity at small and large length scales. J Phys Chem B, 1999, 103: 4570–4577CrossRefGoogle Scholar
  3. 3.
    Maibaum L, Dinner A R, Chandler D. Micelle formation and the hydrophobic effect. J Phys Chem B, 2004, 108: 6778–6781CrossRefGoogle Scholar
  4. 4.
    Pan A, Naskar B, Prameela G K S, et al. Amphiphile behavior in mixed solvent media I: Self-aggregation and ion association of sodium dodecylsulfate in 1,4-dioxane-water and methanol-water media. Langmuir, 2012, 28: 13830–13843CrossRefGoogle Scholar
  5. 5.
    Patra N, Král P. Controlled self-assembly of filled micelles on nanotubes. J Am Chem Soc, 2011, 133: 6146–6149CrossRefGoogle Scholar
  6. 6.
    Prestipino S, Laio A, Tosatti E. Systematic improvement of classical nucleation theory. Phys Rev Lett, 2012, 108: 225701ADSCrossRefGoogle Scholar
  7. 7.
    Meng S, Xu L F, Wang E G, et al. Vibrational recognition of hydrogen-bonded water networks on a metal surface. Phys Rev Lett, 2002, 89: 176104ADSCrossRefGoogle Scholar
  8. 8.
    Ogasawara H, Brena B, Nordlund D, et al. Structure and bonding of water on Pt (111). Phys Rev Lett, 2002, 89: 276102ADSCrossRefGoogle Scholar
  9. 9.
    Andersson K, Nikitin A, Pettersson L G M, et al. Water dissociation on Ru (001): An activated process. Phys Rev Lett, 2004, 93: 196101ADSCrossRefGoogle Scholar
  10. 10.
    Yang J J, Meng S, Xu L F, et al. Water adsorption on hydroxylated silica surfaces studied using the density functional theory. Phys Rev B, 2005, 71: 035413ADSCrossRefGoogle Scholar
  11. 11.
    Michaelides A, Morgenstern K. Ice nanoclusters at hydrophobic metal surfaces. Nat Mater, 2007, 6: 597–601CrossRefGoogle Scholar
  12. 12.
    Hu X L, Michaelides A. Water on the hydroxylated (001) surface of kaolinite: From monomer adsorption to a flat 2D wetting layer. Surf Sci, 2008, 602: 960–974ADSCrossRefGoogle Scholar
  13. 13.
    Limmer D T, Willard A P, Madden P, et al. Hydration of metal surfaces can be dynamically heterogeneous and hydrophobic. Proc Natl Acad Sci, 2013, 110: 4200–4205ADSCrossRefGoogle Scholar
  14. 14.
    Willard A P, Limmer D T, Madden P A, et al. Characterizing heterogeneous dynamics at hydrated electrode surfaces. J Chem Phys, 2013, 138: 184702ADSCrossRefGoogle Scholar
  15. 15.
    Blunt M O, Adisoejoso J, Tahara K, et al. Temperature-induced structural phase transitions in a two-dimensional self-assembled network. J Am Chem Soc, 2013, 135: 12068–12075CrossRefGoogle Scholar
  16. 16.
    Palmer B J, Liu J. Simulations of micelle self-assembly in surfactant solutions. Langmuir, 1996, 12: 746–753CrossRefGoogle Scholar
  17. 17.
    Brocos P, Mendoza-Espinosa P, Castillo R, et al. Multiscale molecular dynamics simulations of micelles: Coarse-grain for self-assembly and atomic resolution for finer details. Soft Matter, 2012, 8: 9005–9014ADSCrossRefGoogle Scholar
  18. 18.
    Keller A, Fritzsche M, Yu Y P, et al. Influence of hydrophobicity on the surface-catalyzed assembly of the islet Amyloid polypeptide. ACS Nano, 2011, 4: 2770–2778CrossRefGoogle Scholar
  19. 19.
    Zhang F, Du H N, Zhang Z X, et al. Epitaxial growth of peptide nanofilaments on inorganic surfaces: Effects of interfacial hydrophobicity/hydrophilicity. Angew Chem Int Ed, 2006, 45: 3611–3613CrossRefMathSciNetGoogle Scholar
  20. 20.
    Alexiadis A, Kassinos S. Molecular simulation of water in carbon nanotubes. Chem Rev, 2008, 108: 5014–5034CrossRefGoogle Scholar
  21. 21.
    Berne B J, Weeks J D, Zhou R H. Dewetting and hydrophobic interaction in physical and biological systems. Annu Rev Phys Chem, 2009, 60: 85–103ADSCrossRefGoogle Scholar
  22. 22.
    Giovambattista N, Rossky P J, Debenedetti P G. Computational studies of pressure, temperature, and surface effects on the structure and thermodynamics of confined water. Annu Rev Phys Chem, 2012, 63: 179–200ADSCrossRefGoogle Scholar
  23. 23.
    Rasaiah J C, Garde S, Hummer G. Water in nonpolar confinement: From nanotubes to proteins and beyond. Annu Rev Phys Chem, 2008, 59: 713–740ADSCrossRefGoogle Scholar
  24. 24.
    Koishi T, Yasuoka K, Fujikawa S, et al. Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface. Proc Natl Acad Sci, 2009, 106: 8435–8440ADSCrossRefGoogle Scholar
  25. 25.
    Wan R, Li J, Lu H, et al. Controllable water channel gating of nanometer dimensions. J Am Chem Soc, 2005, 127: 7166–7170CrossRefGoogle Scholar
  26. 26.
    Wang C L, Zhou B, Tu Y S, et al. Critical dipole length for the wetting transition due to collective water-dipoles interactions. Sci Rep, 2012, 2: 358ADSGoogle Scholar
  27. 27.
    Duan M, Song B, Shi G, et al. Cation⊗3π: Cooperative interaction of a cation and three Benzenes with an anomalous order in binding energy. J Am Chem Soc, 2012, 134: 12104–12109CrossRefGoogle Scholar
  28. 28.
    Koishi T, Yasuoka K, Fujikawa S, et al. Measurement of contact-angle hysteresis for droplets on nanopillared surface and in the Cassie and Wenzel states: A molecular dynamics simulation study. ACS Nano, 2011, 5: 6834–6842CrossRefGoogle Scholar
  29. 29.
    Zaera F. Probing liquid/solid interfaces at the molecular level. Chem Rev, 2012, 112: 2920–2986CrossRefGoogle Scholar
  30. 30.
    Shen Y R. Phase-sensitive sum-frequency spectroscopy. Annu Rev Phys Chem, 2013, 64: 129–150ADSCrossRefGoogle Scholar
  31. 31.
    Kimmel G A, Petrik N G, Dohnalek Z, et al. Crystalline ice growth on Pt (111): Observation of a hydrophobic water monolayer. Phys Rev Lett, 2005, 95: 166102ADSCrossRefGoogle Scholar
  32. 32.
    Meng S, Wang E G, Gao S. Water adsorption on metal surfaces: A general picture from density functional theory studies. Phys Rev B, 2004, 69: 195404ADSCrossRefGoogle Scholar
  33. 33.
    Michaelides A, Alavi A, King D A. Insight into H2O-ice adsorption and dissociation on metal surfaces from first-principles simulations. Phys Rev B, 2004, 69: 113404ADSCrossRefGoogle Scholar
  34. 34.
    Cheng L, Fenter P, Nagy K L, et al. Molecular-scale density oscillations in water adjacent to a mica surface. Phys Rev Lett, 2001, 87: 156103ADSCrossRefGoogle Scholar
  35. 35.
    Hu J, Xiao X D, Ogletree D F, et al. Imaging the condensation and evaporation of molecularly thin films of water with nanometer resolution. Science, 1995, 268: 267–269ADSCrossRefGoogle Scholar
  36. 36.
    Lützenkirchen J, Zimmermann R, Preocanin T, et al. An attempt to explain bimodal behaviour of the sapphire c-plane electrolyte interface. Adv Colloid Interface Sci, 2010, 157: 61–74CrossRefGoogle Scholar
  37. 37.
    Miranda P B, Xu L, Shen Y R, et al. Icelike water monolayer adsorbed on mica at room temperature. Phys Rev Lett, 1998, 81: 5876ADSCrossRefGoogle Scholar
  38. 38.
    Odelius M, Bernasconi M, Parrinello M. Two dimensional ice adsorbed on mica surface. Phys Rev Lett, 1997, 78: 2855ADSCrossRefGoogle Scholar
  39. 39.
    Rotenberg B, Patel A J, Chandler D. Molecular explanation for why Talc surfaces can be both hydrophilic and hydrophobic. J Am Chem Soc, 2011, 133: 20521–20527CrossRefGoogle Scholar
  40. 40.
    Spagnoli C, Loos K, Ulman A, et al. Imaging structured water and bound polysaccharide on mica surface at ambient temperature. J Am Chem Soc, 2003, 125: 7124–7128CrossRefGoogle Scholar
  41. 41.
    Wang C L, Zhou B, Xiu P, et al. Effect of surface morphology on the ordered water layer at room temperature. J Phys Chem C, 2011, 115: 3018–3024CrossRefGoogle Scholar
  42. 42.
    Wang C L, Lu H J, Wang Z G, et al. Stable liquid water droplet on a water monolayer formed at room temperature on ionic model substrates. Phys Rev Lett, 2009, 103: 137801ADSCrossRefGoogle Scholar
  43. 43.
    Xu D, Liechti K M, Ravi-Chandar K. Mechanical probing of icelike water monolayers. Langmuir, 2009, 25: 12870–12873CrossRefGoogle Scholar
  44. 44.
    Xu K, Cao P G, Heath J R. Graphene visualizes the first water adlayers on mica at ambient conditions. Science, 2010, 329: 1188–1191ADSCrossRefGoogle Scholar
  45. 45.
    Wang J, Kalinichev A G, Kirkpatrick R J, et al. Structure, energetics, and dynamics of water adsorbed on the muscovite (001) surface: A molecular dynamics simulation. J Phys Chem B, 2005, 109: 15893–15905CrossRefGoogle Scholar
  46. 46.
    Park S H, Sposito G. Structure of water adsorbed on a mica surface. Phys Rev Lett, 2002, 89, 085501ADSCrossRefGoogle Scholar
  47. 47.
    Zhu C, Li H, Huang Y, et al. Microscopic insight into surface wetting: Relations between interfacial water structure and the underlying lattice constant. Phys Rev Lett, 2013, 110: 126101ADSCrossRefGoogle Scholar
  48. 48.
    Phan A, Ho T A, Cole D R, et al. Molecular structure and dynamics in thin water films at metal oxide surfaces: Magnesium, aluminum, and silicon oxide surfaces. J Phys Chem C, 2012, 116: 15962–15973CrossRefGoogle Scholar
  49. 49.
    Jung Y, Marcus R A. On the theory of organic catalysis “on water”. J Am Chem Soc, 2007, 129: 5492–5502CrossRefGoogle Scholar
  50. 50.
    Buch V, Milet A, Vácha R, et al. Water surface is acidic. Proc Natl Acad Sci, 2007, 104: 7342–7347ADSCrossRefGoogle Scholar
  51. 51.
    James M, Ciampi S, Darwish T A, et al. Nanoscale water condensation on click-functionalized self-assembled monolayers. Langmuir, 2011, 27: 10753–10762CrossRefGoogle Scholar
  52. 52.
    James M, Darwish T A, Ciampi S, et al. Nanoscale condensation of water on self-assembled monolayers. Soft Matter, 2011, 7: 5309–5318ADSCrossRefGoogle Scholar
  53. 53.
    Cheh J, Gao Y, Wang C, et al. Ice or water: Thermal properties of monolayer water adsorbed on a substrate. J Stat Mech-Theory Exp, 2013, 6: P06009Google Scholar
  54. 54.
    Müller-Plathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J Chem Phys, 1997, 106: 6082ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations