Skip to main content
Log in

Compositional evolution of lava plains in the Syria-Thaumasia Block, Mars

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Tharsis is the most prominent volcanic province on Mars, yet the compositions of lava flows and how composition relates to the development of Tharsis are poorly known. Most of Tharsis is covered with air-fall dust, which inhibits spectroscopic determination of lava mineralogy. The Syria-Thaumasia Block (STB) is a complex tectono-volcanic province closely related to the Tharsis bulge. The lava plains of STB have different emplacement ages, which provide an opportunity to examine whether magma composition changed with the evolution of Tharsis. In this study, we assessed the lava plains using Thermal Emission Spectrometer (TES) data. Using derived physical properties, we targeted dust-free regions from four different-aged geological units’ surfaces and determined the mineralogical composition by modeling the average TES surface spectrum from each of the four surfaces. All units have similar mineralogy but the younger two units have elevated abundance of high-SiO2 phases. The spatial distribution of wrinkle ridges indicates lava plains of unit HNr (older ridged plains material) and Hr (younger ridged plains material) were emplaced before the rise of Tharsis, whereas Hsl (flows of lower member) and Hsu (upper member) were emplaced after Tharsis uplift was initiated. We show that the magma composition differed in the lava plains of STB after the uplift of Tharsis. This study further characterizes early martian magma composition and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Werner S C. The global martian volcanic evolutionary history. Icarus, 2009, 201(1): 44–68

    Article  ADS  Google Scholar 

  2. Xiao L, Huang J, Christensen P R, et al. Ancient volcanism and its implication for thermal evolution of mars. Earth Planet Sc Lett, 2012, 323–324(0): 9–18

    Article  Google Scholar 

  3. Carr M H, Head J W. Geologic history of mars. Earth Planet Sc Lett, 2010, 294(3–4): 185–203

    Article  ADS  Google Scholar 

  4. Carr M H. The Surface of Mars. Cambridge: Cambridge University Press, 2006

    Google Scholar 

  5. Beuthe M, Le Maistre S, Rosenblatt P, et al. Density and lithospheric thickness of the tharsis province from MEX MaRS and MRO gravity data. J Geophys Res-Planet, 2012, 117: E04002

    Article  ADS  Google Scholar 

  6. Baratoux D, Pinet P, Toplis M J, et al. Shape, rheology and emplacement times of small martian shield volcanoes. J Volcanol Geoth Res, 2009, 185(1–2): 47–68

    Article  ADS  Google Scholar 

  7. Wilson L, Mouginis-Mark P J, Tyson S, et al. Fissure eruptions in tharsis, mars: Implications for eruption conditions and magma sources. J Volcanol Geoth Res, 2009, 185(1–2): 28–46

    Article  ADS  Google Scholar 

  8. Baratoux D, Toplis M J, Monnereau M, et al. Thermal history of mars inferred from orbital geochemistry of volcanic provinces. Nature, 2011, 472(7343): 338–341

    Article  ADS  Google Scholar 

  9. Bandfield J L. Global mineral distributions on Mars. J Geophys Res-Planet, 2002, 107(E6): 9

    Article  Google Scholar 

  10. Poulet F, Gomez C, Bibring J P, et al. Martian surface mineralogy from Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité on board the Mars Express spacecraft (OMEGA/MEx): Global mineral maps. J Geophys Res-Planet, 2007, 112(E8), doi:10.1029/2006JE002840

    Google Scholar 

  11. Rogers A D, Christensen P R. Surface mineralogy of martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration. J Geophys Res-Planet, 2007, 112(E1), doi: 10.1029/2006JE002727

    Google Scholar 

  12. Ody A, Poulet F, Langevin Y, et al. Global maps of anhydrous minerals at the surface of mars from OMEGA/MEx. J Geophys Res-Planet, 2012, 117, doi: 10.1029/2012je004117

    Google Scholar 

  13. Ruff S W, Christensen P R. Bright and dark regions on mars: Particle size and mineralogical characteristics based on thermal emission spectrometer data. J Geophys Res-Planet, 2002, 107(E12): 2

    Article  Google Scholar 

  14. Lang N P, Tornabene L L, McSween H Y, et al. Tharsis-sourced relatively dust-free lavas and their possible relationship to martian meteorites. J Volcanol Geoth Res, 2009, 185(1–2): 103–115

    Article  ADS  Google Scholar 

  15. Dohm J M, Tanaka K L. Geology of the thaumasia region, mars: Plateau development, valley origins, and magmatic evolution. Planet Space Sci, 1999, 47(3–4): 411–431

    Article  ADS  Google Scholar 

  16. Tanaka K L, Davis P A. Tectonic history of the syria planum province of mars. J Geophys Res-Solid, 1988, 93(B12): 14893–14917

    Article  ADS  Google Scholar 

  17. Anderson R C, Dohm J M, Golombek M P, et al. Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars. J Geophys Res-Planet, 2001, 106(E9): 20563–20585

    Article  ADS  Google Scholar 

  18. Baptista A R, Mangold N, Ansan V, et al. A swarm of small shield volcanoes on syria planum, Mars. J Geophys Res-Planet, 2008, 113(E9), doi:10.1029/2007JE002945

    Google Scholar 

  19. Plescia J B, Golombek M P. Origin of planetary wrinkle ridges based on the study of terrestrial analogs. Geol Soc Am Bull, 1986, 97(11): 1289–1299

    Article  Google Scholar 

  20. Schultz RA. Localization of bedding plane slip and backthrust faults above blind thrust faults: Keys to wrinkle ridge structure. J Geophys Res-Planet, 2000, 105(E5): 12035–12052

    Article  ADS  Google Scholar 

  21. Golombek M P, Anderson F S, Zuber M T. Martian wrinkle ridge topography: Evidence for subsurface faults from mola. J Geophys Res-Planet, 2001, 106(E10): 23811–23821

    Article  ADS  Google Scholar 

  22. Dohm J M, Tanaka K L, Hare T M. Geological map of the thaumasia region, Mars. U.S. Geological Survey Geologic Investigations Series I-2650, 2001 (Available at http://pubs.usgs.gov/imap/i2650/)

    Google Scholar 

  23. Putzig N E, Mellon M T. Apparent thermal inertia and the surface heterogeneity of Mars. Icarus, 2007, 191(1): 68–94

    Article  ADS  Google Scholar 

  24. Christensen P R, Bandfield J L, Hamilton V E, et al. Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results. J Geophys Res-Planet, 2001, 106(E10): 23823–23871

    Article  ADS  Google Scholar 

  25. Presley M A, Christensen P R. Thermal conductivity measurements of particulate materials. 2. Results. J Geophys Res-Planet, 1997, 102(E3): 6551–6566

    Article  ADS  Google Scholar 

  26. Fergason R L, Christensen P R, Kieffer H H. High-resolution thermal inertia derived from the thermal emission imaging system (THEMIS): Thermal model and applications. J Geophys Res-Planet, 2006, 111(E12), doi: 10.1029/2006JE002735

    Google Scholar 

  27. Mellon M T, Jakosky B M, Kieffer H H, et al. High-resolution thermal inertia mapping from the Mars global surveyor thermal emission spectrometer. Icarus, 2000, 148(2): 437–455

    Article  ADS  Google Scholar 

  28. Williams D A, Greeley R, Manfredi L, et al. Surface-compositional properties of the Malea Planum region of the Circum-Hellas Volcanic Province, Mars. Earth Planet Sc Lett, 2010, 294(3–4): 451–465

    Article  ADS  Google Scholar 

  29. Rogers A D, Bandfield J L, Christensen P R. Global spectral classification of martian low-albedo regions with mars global surveyor thermal emission spectrometer (MGS-TES) data. J Geophys Res-Planet, 2007, 112(E2), doi: 10.1029/2006JE002726

    Google Scholar 

  30. Bandfield J L, Hamilton V E, Christensen P R. A global view of martian surface compositions from MGS-TES. Science, 2000, 287(5458): 1626–1630

    Article  ADS  Google Scholar 

  31. Smith M D, Bandfield J L, Christensen P R. Separation of atmospheric and surface spectral features in mars global surveyor thermal emission spectrometer (TES) spectra. J Geophys Res-Planet, 2000, 105(E4): 9589–9607

    Article  ADS  Google Scholar 

  32. Ramsey M S, Christensen P R. Mineral abundance determination: Quantitative deconvolution of thermal emission spectra. J Geophys Res-Sol Ea, 1998, 103(B1): 577–596

    Article  ADS  Google Scholar 

  33. Rogers A D, Aharonson O. Mineralogical composition of sands in meridiani planum determined from mars exploration rover data and comparison to orbital measurements. J Geophys Res-Planet, 2008, 113(E6), doi: 10.1029/2007JE002995

    Google Scholar 

  34. Christensen P R, Bandfield J L, Smith M D, et al. Identification of a basaltic component on the martian surface from thermal emission spectrometer data. J Geophys Res-Planet, 2000, 105(E4): 9609–9621

    Article  ADS  Google Scholar 

  35. Huang J, Edwards C S, Horgan B H N, et al. Identification and mapping of dikes with relatively primitive compositions in thaumasia planum on Mars: Implications for tharsis volcanism and the opening of valles marineris. Geophys Res Lett, 2012, 39(17), doi: 10.1029/2012gl052523

    Google Scholar 

  36. Wilson L, Head J W. Tharsis-radial graben systems as the surface manifestation of plume-related dike intrusion complexes: Models and implications. J Geophys Res-Planet, 2002, 107(E8), doi: 10.1029/2001je001593

    Google Scholar 

  37. Andrews-Hanna J C. The formation of valles marineris: 2. Stress focusing along the buried dichotomy boundary. J Geophys Res-Planet, 2012, 117(E4), doi: 10.1029/2011je003954

    Google Scholar 

  38. Greeley R, Leach R N, Williams S H, et al. Rate of wind abrasion on Mars. J Geophys Res-Planet, 1982, 87(Nb12): 9–24

    Google Scholar 

  39. Sagan C, Veverka J, Fox P, et al. Variable features on Mars, 2, Mariner-9 global results. J Geophys Res-Planet, 1973, 78(20): 4163–4196

    Article  ADS  Google Scholar 

  40. Hartmann W K, Neukum G. Cratering chronology and the evolution of Mars. Space Sci Rev, 2001, 96(1–4): 165–194

    Article  ADS  Google Scholar 

  41. Boynton W V, Taylor G J, Evans L G, et al. Concentration of h, si, cl, k, fe, and th in the low- and mid-latitude regions of Mars. J Geophys Res-Planet, 2007, 112(E12), doi: 10.1029/2007JE002887

    Google Scholar 

  42. Hauber E, Bleacher J, Gwinner K, et al. The topography and morphology of low shields and associated landforms of plains volcanism in the Tharsis region of Mars. J Volcanol Geoth Res, 2009, 185(1–2): 69–95

    Article  ADS  Google Scholar 

  43. Huang J, Xiao L, Kraft M D, et al. Surface-compositional properties of lava plains in syria-thaumasia block, Mars. 2012 AGU Fall Meeting abstract, id: P11E-1857

  44. Ghiorso M S, Hirschmann M M, Reiners P W, et al. The pmelts: A revision of melts for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 gpa. Geochem Geophy Geosy, 2002, 3: 1–35

    Article  Google Scholar 

  45. Dreibus G, Wanke H. Mars, a volatile-rich planet. Meteoritics, 1985, 20(2): 367–381

    ADS  Google Scholar 

  46. Christensen P R, Bandfield J L, Hamilton V E, et al. A thermal emission spectral library of rock-forming minerals. J Geophys Res-Planet, 2000, 105(E4): 9735–9739

    Article  ADS  Google Scholar 

  47. Smith D E, Zuber M T, Frey H V, et al. Mars orbiter laser altimeter: Experiment summary after the first year of global mapping of mars. J Geophys Res-Planet, 2001, 106(E10): 23689–23722

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Huang or Long Xiao.

Additional information

Contributed by XIAO Long (Associate Editor)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Xiao, L. Compositional evolution of lava plains in the Syria-Thaumasia Block, Mars. Sci. China Phys. Mech. Astron. 57, 994–1000 (2014). https://doi.org/10.1007/s11433-014-5407-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5407-3

Keywords

Navigation