Skip to main content
Log in

Epitaxial growth and in-plane dielectric properties of orthorhombic HoMnO3 films

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Orthorhombic HoMnO3 (HMO) thin films were grown epitaxially on LaAlO3 (001) substrates by using pulsed laser deposition technique. The films showed perfect orthorhombic crystallization and were well-aligned with the substrates. The in-plane dielectric constant and loss of HMO films were measured as functions of temperature (80–300 K) and frequency (120 Hz–100 kHz) by using coplanar interdigital electrodes. Two thermally activated dielectric relaxations were found, and the respective peaks shifted to higher temperatures as the measuring frequency increased. The in-plane dielectric properties of epitaxial orthorhombic HMO films were considered as universal dielectric response behavior, and the dipolar effects and the hopping conductivity induced by the charge carriers were used to explain the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eerenstein W, Mathur N D, Scott J F. Multiferroic and magnetoelectric materials. Nature, 2006, 442: 759–765

    Article  ADS  Google Scholar 

  2. Lottermoser T, Lonkai T, Amann U, et al. Magnetic phase control by an electric field. Nature, 2004, 430: 541–544

    Article  ADS  Google Scholar 

  3. Zhang Y T, Wang C C, Liu W B, et al. Spin-glass like behaviors in La1−x TbxMnO3 perovskite. Sci China Ser G-Phys Mech Astron, 2009, 52: 1893–1897

    Article  ADS  Google Scholar 

  4. Zhang C G, Zhang X Z, Sun Y H, et al. Atomistic simulation of dynamical and defect properties of multiferroic hexagonal YMnO3. Sci China-Phys Mech Astron, 2011, 54: 836–840

    Article  MATH  ADS  Google Scholar 

  5. Mathews S, Ramesh R, Venkatesan T, et al. Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science, 1997, 275: 238–240

    Article  Google Scholar 

  6. Suzuki S, Yamamoto T, Suzuki H, et al. Fabrication and characterization of Ba1−x KxBiO3/Nb-doped SrTiO3 all-oxide-type Schottky junctions. J Appl Phys, 1997, 81: 6830–6837

    Article  ADS  Google Scholar 

  7. Yang C C, Chung M K, Li W H, et al. Magnetic instability and oxygen deficiency in Na-doped TbMnO3. Phys Rev B, 2006, 74(9): 094409

    Article  ADS  Google Scholar 

  8. Lorenz B, Wang Y Q, Sun Y Y, et al. Large magnetodielectric effects in orthorhombic HoMnO3 and YMnO3. Phys Rev B, 2004, 70(21): 212412

    Article  ADS  Google Scholar 

  9. Zhou J S, Goodenough J B. Unusual evolution of the magnetic interactions versus structural distortions in RMnO3 perovskites. Phys Rev Lett, 2006, 96: 47202

    Article  Google Scholar 

  10. Lorenz B, Wang Y Q, Chu C W. Ferroelectricity in perovskite HoMnO3 and YMnO3. Phys Rev B, 2007, 76: 104405

    Article  ADS  Google Scholar 

  11. Murugavel P, Lee J H, Lee D, et al. Physical properties of multiferroic hexagonal HoMnO3 thin films. Appl Phys Lett, 2007, 90: 142902

    Article  ADS  Google Scholar 

  12. Kim J W, Schultz L, Dorra K, et al. Growth and multiferroic properties of hexagonal HoMnO3 films. Appl Phys Lett, 2007, 90: 012502

    Article  ADS  Google Scholar 

  13. Lin J G, Han T C, Wu C T, et al. Directional growth and characterizations of orthorhombic HoMnO3 films. J Cryst Growth, 2008, 310: 3878–3880

    Article  ADS  Google Scholar 

  14. Lin T H, Hsieh C C, Shih H C, et al. Anomalous magnetic ordering in b-axis-oriented orthorhombic HoMnO3 thin films. Appl Phys Lett, 2008, 92: 132503

    Article  ADS  Google Scholar 

  15. Brinks H W, Rodriguez-Carvajal J, Fjellvag H, et al. Crystal and magnetic structure of orthorhombic HoMnO3. Phys Rev B, 2001, 63: 094411

    Article  ADS  Google Scholar 

  16. Kumar A K S, Paruch P, Triscone J M, et al. High-frequency surface acoustic wave device based on thin-film piezoelectric interdigital transducers. Appl Phys Lett, 2004, 85: 1757–1759

    Article  ADS  Google Scholar 

  17. Dimos D, Raymond M V, Schwartz R W, et al. Tunability and calculation of the dielectric constant of capacitor structures with interdigital electrodes. J Electroceram, 1997, 1: 145–153

    Article  Google Scholar 

  18. Hoerman B H, Ford G M, Kaufmann L D, et al. Dielectric properties of epitaxial BaTiO3 thin films. Appl Phys Lett, 1998, 73: 2248–2250

    Article  ADS  Google Scholar 

  19. Song Z T, Chan H L W, Choy C L, et al. Dielectric and ferroelectric properties of in-plane lead lanthanum titanate thin films. Microelectron Eng, 2003, 66: 887–890

    Article  Google Scholar 

  20. Pond J M, Kirchoefer S W, Chang W, et al. Microwave properties of ferroelectric thin films. Integr Ferroelectr, 1998, 22: 317–328

    Article  Google Scholar 

  21. Wang C C, Cui Y M, Zhang L W. Dielectric properties of TbMnO3 ceramics. Appl Phys Lett, 2007, 90: 012904

    Article  ADS  Google Scholar 

  22. Jonscher A K. The ‘universal’ dielectric response. Nature, 1977, 267: 673–679

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WeiTian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P., Wang, W., Zhang, W. et al. Epitaxial growth and in-plane dielectric properties of orthorhombic HoMnO3 films. Sci. China Phys. Mech. Astron. 57, 1875–1878 (2014). https://doi.org/10.1007/s11433-014-5401-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5401-9

Keywords

Navigation