Skip to main content
Log in

Dark matter heating in strange stars

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

We study the effect of dark matter heating on the temperature of typical strange star (SS hereafter) (M = 1.4 M, R = 10 km) in normal phase (NSS hereafter) and in a possible existing colour-flavour locked (CFL)phase (CSS hereafter). For NSS, the influence of dark matter heating is ignored until roughly 107 yr. After 107 yr, the dark matter heating is dominant that significantly delays the star cooling, which maintains a temperature much higher than that predicted by standard cooling model for old stars. Especially for CSS, the emissivity of dark matter will play a leading role after roughly 104 yr, which causes the temperature to rise. This leads to the plateau of surface temperature appearing in ∼106.5 yr which is earlier than that of NSS (∼107 yr).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Witten E. Cosmic separation of phases. Phys Rev D, 1984, 30: 272–285

    Article  ADS  MathSciNet  Google Scholar 

  2. Farhi E, Jaffe R L. Strange matter. Phys Rev D, 1984, 30: 2379–2390

    Article  ADS  Google Scholar 

  3. Alcock C, Farhi E, Olinto A. Strange stars. Astrophys J, 1986, 310: 261–272

    Article  ADS  Google Scholar 

  4. Haensel P, Zdunik J L, Shaeffer R. Strange quark stars. Astron Astrophys, 1986, 160: 121–128

    ADS  Google Scholar 

  5. Colpi M, Miller J C. Rotational properties of strange stars. Astrophys J, 1992, 388: 513–520

    Article  ADS  Google Scholar 

  6. Glendenning N K, Weber F. Nuclear solid crust on rotating strange quark stars. Astrophys J, 1992, 400: 647–658

    Article  ADS  Google Scholar 

  7. Bailin D, Love A. Superfluidity and superconductivity in relativistic fermion systems. Phys Rep, 1984, 107: 325–385

    Article  ADS  Google Scholar 

  8. Alford M G, Rajagopal K, Wilczek F. QCD at finite baryon density: Nucleon droplets and color superconductivity. Phys Lett B, 1998, 422: 247–256

    Article  ADS  Google Scholar 

  9. Rapp R, Schäfer T, Shuryak E, et al. Diquark bose condensates in high density matter and instantons. Phys Rev Lett, 1998, 81: 53–56

    Article  ADS  Google Scholar 

  10. Alford M G, Schmitt A, Rajagopal K, et al. Color superconductivity in dense quark matter. Rev Mod Phys, 2008, 80: 1455–1515

    Article  ADS  Google Scholar 

  11. Cheng K S, Dai Z G. Chemical heating in strange stars. Astrophys J, 1996, 468: 819–822

    Article  ADS  Google Scholar 

  12. Zheng X P, Yu Y W, Li J R. The effect of r-mode instability on the evolution of isolated strange stars. Mon Not R Astron Soc, 2006, 369: 376–382

    Article  ADS  Google Scholar 

  13. Yuan Y F, Zhang J L. Cooling of a rotating strange star with a crust. Astron Astrophys, 1999, 344: 371–375; Yu Y W, Zheng X P. Cooling of a rotating strange star in the color superconducting phase with a crust. Astron Astrophys, 2006, 450: 1071–1075

    ADS  Google Scholar 

  14. Navarro J F, Frenk C S, White S DM. The structure of cold dark matter halos. Astrophys J, 1996, 462: 563–575

    Article  ADS  Google Scholar 

  15. Ahmed Z, Akerib D S, Arrenberg S, et al. CDMS II Collaboration. Dark matter search results from the CDMS II experiment. Science, 2010, 327: 1619–1621

    Article  ADS  Google Scholar 

  16. Aprile E, Alfonsi M, Arisaka K, et al. Dark matter results from 225 live days of XENON100 data. Phys Rev Lett, 2012, 109: 181301

    Article  ADS  Google Scholar 

  17. Perez-Garcia M A, Silk J, Stone J R. Dark matter, neutron stars, and strange quark matter. Phys Rev Lett, 2010, 105: 141101

    Article  ADS  Google Scholar 

  18. Kouvaris C. WIMP annihilation and cooling of neutron stars. Phys Rev D, 2008, 77: 023006

    Article  ADS  Google Scholar 

  19. Iwamoto N. Neutrino emissivities and mean free paths of degenerate quark matter. Ann Phys, 1982, 141: 1–49

    Article  ADS  Google Scholar 

  20. Gudmundsson E H, Pethick C J, Epstein R I. Neutron star envelopes. Astrophys J, 1982, 259: 19–23

    Article  ADS  Google Scholar 

  21. Gudmundsson E H, Pethick C J, Epstein R I. Structure of neutron star envelopes. Astrophys J, 1983, 272: 286–300

    Article  ADS  Google Scholar 

  22. Blaschke D, Klähn T, Voskresensky D N. Diquark condensates and compact star cooling. Astrophys J, 2000, 533: 406–412

    Article  ADS  Google Scholar 

  23. Lattimer J M, van Riper K A, Prakash M, et al. Rapid cooling and the structure of neutron stars. Astrophys J, 1994, 425: 802–813

    Article  ADS  Google Scholar 

  24. Cheng Q, Yu Y W, Zheng X P. Could strange stars be in the color-flavor-locked phase: Tested by their thermal evolutions. Phys Rev D, 2013, 87: 063009

    Article  ADS  Google Scholar 

  25. Reisenegger A. Deviations from chemical equilibrium due to spindown as an internal heat source in neutron stars. Astrophys J, 1995, 442: 749–757

    Article  ADS  Google Scholar 

  26. Watts A L, Andersson N. The spin evolution of nascent neutron stars. Mon Not R Astron Soc, 2002, 333: 943–951

    Article  ADS  Google Scholar 

  27. Aldo T, Roberto T, Silvia Z, et al. Isolated neutron stars: Accretors and coolers. Publ Astron Soc Pac, 2000, 112: 297–314

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi Huang or XiaoPing Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X., Wang, W. & Zheng, X. Dark matter heating in strange stars. Sci. China Phys. Mech. Astron. 57, 791–795 (2014). https://doi.org/10.1007/s11433-014-5393-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5393-5

Keywords

Navigation