Solute redistribution profiles during rapid solidification of undercooled ternary Co-Cu-Pb alloy

Articles Progress of Projects Supported by NSFC


The solute redistribution and phase separation of liquid ternary Co-35%Cu-32.5%Pb immiscible alloy have been investigated using glass fluxing method. A bulk undercooling of 125 K was achieved and the macrosegregation pattern was characterized by a top Co-rich zone and a bottom Cu-rich zone. The average solute contents of the two separated zones decreased with the increase of undercooling, except for the solute Pb in Cu-rich zone. With the enhancement of undercooling, a morphological transition from dendrites into equaxied grains occurred to the primary α(Co) phase in Co-rich zone. The solute redistribution of Cu in primary α(Co) phase was found to depend upon both the undercooling and composition of Co-rich zone. Stokes migration is shown to be the main dynamic mechanism of droplet movement during liquid phase separation.


solute redistribution phase separation macrosegregation undercooling rapid solidification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bogno A, Nguyen-Thi H, Reinhart G, et al. Growth and interaction of dendritic equiaxed grains: In situ characterization by synchrotron X-ray radiography. Acta Mater, 2013, 61: 1303–1315CrossRefGoogle Scholar
  2. 2.
    Kishinawa K, Honjo H, Sakaguchi H. Scale-invariant competitive growth of side branches in a dendritic crystal. Phys Rev E, 2008, 77: 030602(R)ADSCrossRefGoogle Scholar
  3. 3.
    Li J, Wang H M. Microstructure and mechanical properties of rapid directionally solidified Ni-base superalloy Rene’ 41 by laser melting deposition manufacturing. Mater Sci Eng A, 2010, 527: 4823–4829CrossRefGoogle Scholar
  4. 4.
    Song R B, Dai F P, Wei B B. Dendritic growth and solute trapping in rapidly solidified Cu-based alloys. Sci China-Phys Mech Astron, 2011, 54(5): 901–908ADSCrossRefGoogle Scholar
  5. 5.
    Pan S Y, Zhu M F. A three-dimensional sharp interface model for the quantitative simulation of solutal dendritic growth. Acta Mater, 2010, 58: 340–352CrossRefGoogle Scholar
  6. 6.
    Lipton J, Kurz W, Trived R. Rapid dendrite growth in undercooled alloys. Acta Metall, 1987, 35: 957–964CrossRefGoogle Scholar
  7. 7.
    Trivedi R, Lipton J, Kurz W. Effect of growth rate dependent partition coefficient on the dendritic growth in undercooled melt. Acta Metall, 1987, 35: 965–970CrossRefGoogle Scholar
  8. 8.
    Janovszky D, Tomolya K, Sycheva A, et al. Stable miscibility gap in liquid Cu-Zr-Ag ternary alloy. J Alloy Compd, 2012, 541: 353–358CrossRefGoogle Scholar
  9. 9.
    Park B J, Chang H J, Kim W T, et al. Phase separating bulk metallic glass: a hierarchical composite. Phys Rev Lett, 2006, 96: 245503ADSCrossRefGoogle Scholar
  10. 10.
    Sago K G, Melrose J R, Ball R C. Metastable states and the kinetics of colloid phase separation. J Chem Phys, 1999, 110: 2280ADSCrossRefGoogle Scholar
  11. 11.
    Tanaka S, Ataka M, Ito K. Pattern formation and coarsening during metastable phase separation in lysozyme solutions. Phys Rev E, 2002, 65: 051804ADSCrossRefGoogle Scholar
  12. 12.
    Anders D, Weinberg K. Numerical simulation of diffusion induced phase separation and coarsening in binary alloys. Comput Mater Sci, 2011, 50: 1359–1364CrossRefGoogle Scholar
  13. 13.
    Wang W. L, Zhang X M, Li L H, et al. Dual solidification mechanisms of liquid ternary Fe-Cu-Sn alloy. Sci China-Phys Mech Astron, 2012, 55(3): 450–459ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    Baumer R E, Demkowicz M J. Glass transition by gelation in a phase separating binary alloy. Phys Rev Lett, 2013, 110: 145502ADSCrossRefGoogle Scholar
  15. 15.
    Park J M, Mauri R, Anderson P D. Phase separation of viscous ternary liquid mixtures. Chem Eng Sci, 2012, 80: 270–278CrossRefGoogle Scholar
  16. 16.
    Yan N, Wang W L, Wei B. Complex phase separation of ternary Co-Cu-Pb alloy under containerless processing condition. J Alloy Compd, 2013, 558: 109–116CrossRefGoogle Scholar
  17. 17.
    Nishizawa T, Ishida K. The Co-Cu (Cobalt-Copper) system. Bull Alloy Phase Diag, 1984, 5: 161–162CrossRefGoogle Scholar
  18. 18.
    Yan N, Wang W L, Luo S B. Correlated process of phase separation and microstructure evolution of ternary Co-Cu-Pb alloy. Appl Phys A, 2013, 113: 763–770ADSCrossRefGoogle Scholar
  19. 19.
    Danilov D, Nestler B. Dendritic to globular morphology transition in ternary alloy solidification. Phys Rev Lett, 2004, 93: 215501ADSCrossRefGoogle Scholar
  20. 20.
    Thakur S, Pullarkat P A, Kumar P B S. Coarsening through directed droplet coalescence in fluid-fluid phase separation. Phys Rev E, 2009, 80: 011708ADSCrossRefGoogle Scholar
  21. 21.
    Hanna J A, Vlahovska P M. Surfactant-induced migration of a spherical drop in Stokes flow. Phys Fluids, 2010, 22: 013102ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Key Laboratory of Applied Physics and Chemistry, Ministry of EducationNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations