Structural and electronic properties of chiral single-wall copper nanotubes

Abstract

The structural, energetic and electronic properties of chiral (n, m) (3⩽n⩽6, n/2⩽mn) single-wall copper nanotubes (CuNTs) have been investigated by using projector-augmented wave method based on density-functional theory. The (4, 3) CuNT is energetically stable and should be observed experimentally in both free-standing and tip-suspended conditions, whereas the (5, 5) and (6, 4) CuNTs should be observed in free-standing and tip-suspended conditions, respectively. The number of conductance channels in the CuNTs does not always correspond to the number of atomic strands comprising the nanotube. Charge density contours show that there is an enhanced interatomic interaction in CuNTs compared with Cu bulk. Current transporting states display different periods and chirality, the combined effects of which lead to weaker chiral currents on CuNTs.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Murphy C J, Sau T K, Gole A M, et al. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J Phys Chem B, 2005, 109: 13857–13870

    Article  Google Scholar 

  2. 2

    Oshima Y, Onga A. Helical gold nanotube synthesized at 150 K. Phys Rev Lett, 2003, 91: 205503

    ADS  Article  Google Scholar 

  3. 3

    Kharche N, Manjari S R, Zhou Y, et al. A comparative study of quantum transport properties of silver and copper nanowires using first principles calculations. J Phys-Condens Matter, 2011, 23: 085501

    ADS  Article  Google Scholar 

  4. 4

    Kumar A, Kumar A, Ahluwalia P K. Ab initio study of structural, electronic and dielectric properties of free standing ultrathin nanowires of noble metals. Physica E, 2012, 46: 259–269

    ADS  Article  Google Scholar 

  5. 5

    Bowler D R. Atomic-scale nanowires: Physical and electronic structure. J Phys-Condens Matter, 2004, 16: R721–R754

    ADS  Article  Google Scholar 

  6. 6

    Wang B, Shi D, Jia J, et al. Elastic and plastic deformations of nickel nanowires under uniaxial compression. Physica E, 2005, 30: 45–50

    ADS  Article  Google Scholar 

  7. 7

    Kondo Y, Takayanagi K. Synthesis and characterization of helical multi-shell gold nanowires. Science, 2000, 289: 606–608

    ADS  Article  Google Scholar 

  8. 8

    Oshima Y, Knodo Y, Takayanagi K. High-resolution ultrahigh-vacuum electron microscopy of helical gold nanowires: Junction and thinning process. J Electron Microsc, 2003, 52: 49–55

    Article  Google Scholar 

  9. 9

    Tosatti E, Prestipino S, Kostlmeier S, et al. String tension and stability of magic tip-suspended nanowires. Science, 2001, 291: 288–290

    ADS  Article  Google Scholar 

  10. 10

    Wei G, Nan C, Yu D. Large-scale self-assembled Ag nanotubes. Tsinghua Sci Technol, 2005, 10: 736–740

    Article  Google Scholar 

  11. 11

    Oshima Y, Koizumi H, Mouri K, et al. Evidence of a single-wall platinum nanotube. Phys Rev B, 2002, 65: 121401(R)

    ADS  Article  Google Scholar 

  12. 12

    Cao H, Wang L, Qiu Y, et al. Generation and growth mechanism of metal (Fe, Co, Ni) nanotube arrays. Chem Phys Chem, 2006, 7: 1500–1504

    Article  Google Scholar 

  13. 13

    Xue S, Cao C, Zhu H. Electrochemically and template-synthesized nickel nanorod arrays and nanotubes. J Mater Sci, 2006, 41: 5598–5601

    ADS  Article  Google Scholar 

  14. 14

    Li N, Li X, Yin X, et al. Electroless deposition of open-end Cu nanotube arrays. Solid State Commun, 2004, 132: 841–844

    ADS  Article  Google Scholar 

  15. 15

    Kamalakar M V, Raychaudhuri A K. A novel method of synthesis of dense arrays of aligned single crystalline copper nanotubes using electrodeposition in the presence of a rotating electric field. Adv Mater, 2008, 20: 149–154

    Article  Google Scholar 

  16. 16

    Meng F, Jin S. The solution growth of copper nanowires and nanotubes is driven by screw dislocations. Nano Lett, 2012, 12: 234–239

    ADS  Article  MathSciNet  Google Scholar 

  17. 17

    Chowdhury T, Casey D P, Rohan J F. Additive influence on Cu nanotube electrodeposition in anodised aluminium oxide templates. Electrochem Commun, 2009, 11: 1203–1206

    Article  Google Scholar 

  18. 18

    Senger R T, Dag S, Ciraci S. Chiral single-wall gold nanotubes. Phys Rev Lett, 2004, 93: 196807

    ADS  Article  Google Scholar 

  19. 19

    Elizondo S L, Mintmire J W. Ab initio study of helical silver single-wall nanotubes and nanowires. Phys Rev B, 2006, 73: 045431

    ADS  Article  Google Scholar 

  20. 20

    Konar S, Gupta B C. Density functional study of single-wall and double-wall platinum nanotubes. Phys Rev B, 2008, 78: 235414

    ADS  Article  Google Scholar 

  21. 21

    Manrique D Z, Cserti J, Lambert C J. Chiral currents in gold nanotubes. Phys Rev B, 2010, 81: 073103

    ADS  Article  Google Scholar 

  22. 22

    Cai Y, Zhou M, Zeng M, et al. Adsorbate and defect effects on electronic and transport properties of gold nanotubes. Nanotechnol, 2011, 22: 215702

    ADS  Article  Google Scholar 

  23. 23

    Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B, 1994, 49: 14251–14269

    ADS  Article  Google Scholar 

  24. 24

    Kresse G, Furthmüller J. Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6: 15–50

    Article  Google Scholar 

  25. 25

    Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    ADS  Article  Google Scholar 

  26. 26

    Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59: 1758–1775

    ADS  Article  Google Scholar 

  27. 27

    Perdew J P, Burke S, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    ADS  Article  Google Scholar 

  28. 28

    Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Phys Rev B, 1976, 13: 5188–5192

    ADS  Article  MathSciNet  Google Scholar 

  29. 29

    Kittel C. Introduction to Solid State Physics. 8th ed. New York: Wiley, 2005. 20–21

    Google Scholar 

  30. 30

    Soon A, Todorova M, Delley B, et al. Oxygen adsorption and stability of surface oxides on Cu(111): A first-principles investigation. Phys Rev B, 2006, 73: 165424

    ADS  Article  Google Scholar 

  31. 31

    Landauer R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J Res Dev, 1988, 32: 306–316

    Article  MathSciNet  Google Scholar 

  32. 32

    Sanvito S. Ab-initio Methods for Spin-Transport at the Nanoscale Level. 2nd ed. California: American Scientific Publishers, 2005. 28

    Google Scholar 

  33. 33

    Wang B L, Zhao J J, Chen X S, et al. Structures and quantum conductances of atomic-sized copper nanowires. Nanotechnol, 2006, 17: 3178–3182

    ADS  Article  Google Scholar 

  34. 34

    He C, Qi L, Zhang W X, et al. Effect of electric and stress field on structures and quantum conduction of Cu nanowires. Appl Phys Lett, 2011, 99: 073105

    ADS  Article  Google Scholar 

  35. 35

    Ma L C, Zhang J M, Xu K W. Structural and electronic properties of copper nanowire encapsulated into BeO nanotube: First-principles study. Physica B, 2012, 407: 784–789

    ADS  Article  Google Scholar 

  36. 36

    Ma L C, Zhang J M, Xu K W. Structural and electronic properties of ultrathin copper nanowires: A density-functional theory study. Physica B, 2013, 410: 105–111

    ADS  Article  Google Scholar 

  37. 37

    Miyamoto Y, Rubio A, Louie S G, et al. Self-inductance of chiral conducting nanotubes. Phys Rev B, 1999, 60: 13885

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to JianMin Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Duan, Y., Zhang, J. & Xu, K. Structural and electronic properties of chiral single-wall copper nanotubes. Sci. China Phys. Mech. Astron. 57, 644–651 (2014). https://doi.org/10.1007/s11433-013-5387-8

Download citation

Keywords

  • density-functional theory
  • Cu nanotube
  • structural property
  • electronic property