Structural and electronic properties of chiral single-wall copper nanotubes

  • YingNi Duan
  • JianMin ZhangEmail author
  • KeWei Xu


The structural, energetic and electronic properties of chiral (n, m) (3⩽n⩽6, n/2⩽mn) single-wall copper nanotubes (CuNTs) have been investigated by using projector-augmented wave method based on density-functional theory. The (4, 3) CuNT is energetically stable and should be observed experimentally in both free-standing and tip-suspended conditions, whereas the (5, 5) and (6, 4) CuNTs should be observed in free-standing and tip-suspended conditions, respectively. The number of conductance channels in the CuNTs does not always correspond to the number of atomic strands comprising the nanotube. Charge density contours show that there is an enhanced interatomic interaction in CuNTs compared with Cu bulk. Current transporting states display different periods and chirality, the combined effects of which lead to weaker chiral currents on CuNTs.


density-functional theory Cu nanotube structural property electronic property 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Murphy C J, Sau T K, Gole A M, et al. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J Phys Chem B, 2005, 109: 13857–13870CrossRefGoogle Scholar
  2. 2.
    Oshima Y, Onga A. Helical gold nanotube synthesized at 150 K. Phys Rev Lett, 2003, 91: 205503ADSCrossRefGoogle Scholar
  3. 3.
    Kharche N, Manjari S R, Zhou Y, et al. A comparative study of quantum transport properties of silver and copper nanowires using first principles calculations. J Phys-Condens Matter, 2011, 23: 085501ADSCrossRefGoogle Scholar
  4. 4.
    Kumar A, Kumar A, Ahluwalia P K. Ab initio study of structural, electronic and dielectric properties of free standing ultrathin nanowires of noble metals. Physica E, 2012, 46: 259–269ADSCrossRefGoogle Scholar
  5. 5.
    Bowler D R. Atomic-scale nanowires: Physical and electronic structure. J Phys-Condens Matter, 2004, 16: R721–R754ADSCrossRefGoogle Scholar
  6. 6.
    Wang B, Shi D, Jia J, et al. Elastic and plastic deformations of nickel nanowires under uniaxial compression. Physica E, 2005, 30: 45–50ADSCrossRefGoogle Scholar
  7. 7.
    Kondo Y, Takayanagi K. Synthesis and characterization of helical multi-shell gold nanowires. Science, 2000, 289: 606–608ADSCrossRefGoogle Scholar
  8. 8.
    Oshima Y, Knodo Y, Takayanagi K. High-resolution ultrahigh-vacuum electron microscopy of helical gold nanowires: Junction and thinning process. J Electron Microsc, 2003, 52: 49–55CrossRefGoogle Scholar
  9. 9.
    Tosatti E, Prestipino S, Kostlmeier S, et al. String tension and stability of magic tip-suspended nanowires. Science, 2001, 291: 288–290ADSCrossRefGoogle Scholar
  10. 10.
    Wei G, Nan C, Yu D. Large-scale self-assembled Ag nanotubes. Tsinghua Sci Technol, 2005, 10: 736–740CrossRefGoogle Scholar
  11. 11.
    Oshima Y, Koizumi H, Mouri K, et al. Evidence of a single-wall platinum nanotube. Phys Rev B, 2002, 65: 121401(R)ADSCrossRefGoogle Scholar
  12. 12.
    Cao H, Wang L, Qiu Y, et al. Generation and growth mechanism of metal (Fe, Co, Ni) nanotube arrays. Chem Phys Chem, 2006, 7: 1500–1504CrossRefGoogle Scholar
  13. 13.
    Xue S, Cao C, Zhu H. Electrochemically and template-synthesized nickel nanorod arrays and nanotubes. J Mater Sci, 2006, 41: 5598–5601ADSCrossRefGoogle Scholar
  14. 14.
    Li N, Li X, Yin X, et al. Electroless deposition of open-end Cu nanotube arrays. Solid State Commun, 2004, 132: 841–844ADSCrossRefGoogle Scholar
  15. 15.
    Kamalakar M V, Raychaudhuri A K. A novel method of synthesis of dense arrays of aligned single crystalline copper nanotubes using electrodeposition in the presence of a rotating electric field. Adv Mater, 2008, 20: 149–154CrossRefGoogle Scholar
  16. 16.
    Meng F, Jin S. The solution growth of copper nanowires and nanotubes is driven by screw dislocations. Nano Lett, 2012, 12: 234–239ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    Chowdhury T, Casey D P, Rohan J F. Additive influence on Cu nanotube electrodeposition in anodised aluminium oxide templates. Electrochem Commun, 2009, 11: 1203–1206CrossRefGoogle Scholar
  18. 18.
    Senger R T, Dag S, Ciraci S. Chiral single-wall gold nanotubes. Phys Rev Lett, 2004, 93: 196807ADSCrossRefGoogle Scholar
  19. 19.
    Elizondo S L, Mintmire J W. Ab initio study of helical silver single-wall nanotubes and nanowires. Phys Rev B, 2006, 73: 045431ADSCrossRefGoogle Scholar
  20. 20.
    Konar S, Gupta B C. Density functional study of single-wall and double-wall platinum nanotubes. Phys Rev B, 2008, 78: 235414ADSCrossRefGoogle Scholar
  21. 21.
    Manrique D Z, Cserti J, Lambert C J. Chiral currents in gold nanotubes. Phys Rev B, 2010, 81: 073103ADSCrossRefGoogle Scholar
  22. 22.
    Cai Y, Zhou M, Zeng M, et al. Adsorbate and defect effects on electronic and transport properties of gold nanotubes. Nanotechnol, 2011, 22: 215702ADSCrossRefGoogle Scholar
  23. 23.
    Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B, 1994, 49: 14251–14269ADSCrossRefGoogle Scholar
  24. 24.
    Kresse G, Furthmüller J. Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6: 15–50CrossRefGoogle Scholar
  25. 25.
    Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186ADSCrossRefGoogle Scholar
  26. 26.
    Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59: 1758–1775ADSCrossRefGoogle Scholar
  27. 27.
    Perdew J P, Burke S, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868ADSCrossRefGoogle Scholar
  28. 28.
    Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Phys Rev B, 1976, 13: 5188–5192ADSCrossRefMathSciNetGoogle Scholar
  29. 29.
    Kittel C. Introduction to Solid State Physics. 8th ed. New York: Wiley, 2005. 20–21Google Scholar
  30. 30.
    Soon A, Todorova M, Delley B, et al. Oxygen adsorption and stability of surface oxides on Cu(111): A first-principles investigation. Phys Rev B, 2006, 73: 165424ADSCrossRefGoogle Scholar
  31. 31.
    Landauer R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J Res Dev, 1988, 32: 306–316CrossRefMathSciNetGoogle Scholar
  32. 32.
    Sanvito S. Ab-initio Methods for Spin-Transport at the Nanoscale Level. 2nd ed. California: American Scientific Publishers, 2005. 28Google Scholar
  33. 33.
    Wang B L, Zhao J J, Chen X S, et al. Structures and quantum conductances of atomic-sized copper nanowires. Nanotechnol, 2006, 17: 3178–3182ADSCrossRefGoogle Scholar
  34. 34.
    He C, Qi L, Zhang W X, et al. Effect of electric and stress field on structures and quantum conduction of Cu nanowires. Appl Phys Lett, 2011, 99: 073105ADSCrossRefGoogle Scholar
  35. 35.
    Ma L C, Zhang J M, Xu K W. Structural and electronic properties of copper nanowire encapsulated into BeO nanotube: First-principles study. Physica B, 2012, 407: 784–789ADSCrossRefGoogle Scholar
  36. 36.
    Ma L C, Zhang J M, Xu K W. Structural and electronic properties of ultrathin copper nanowires: A density-functional theory study. Physica B, 2013, 410: 105–111ADSCrossRefGoogle Scholar
  37. 37.
    Miyamoto Y, Rubio A, Louie S G, et al. Self-inductance of chiral conducting nanotubes. Phys Rev B, 1999, 60: 13885ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.College of Physics and Information TechnologyShaanxi Normal UniversityXi’anChina
  2. 2.Department of Medical Engineering and TechnologyXinjiang Medical UniversityUrumqiChina
  3. 3.College of Physics and Mechanical and Electronic EngineeringXi’an University of Arts and ScienceXi’anChina

Personalised recommendations