Skip to main content
Log in

Robust optimization of nonlinear impulsive rendezvous with uncertainty

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The optimal rendezvous trajectory designs in many current research efforts do not incorporate the practical uncertainties into the closed loop of the design. A robust optimization design method for a nonlinear rendezvous trajectory with uncertainty is proposed in this paper. One performance index related to the variances of the terminal state error is termed the robustness performance index, and a two-objective optimization model (including the minimum characteristic velocity and the minimum robustness performance index) is formulated on the basis of the Lambert algorithm. A multi-objective, non-dominated sorting genetic algorithm is employed to obtain the Pareto optimal solution set. It is shown that the proposed approach can be used to quickly obtain several inherent principles of the rendezvous trajectory by taking practical errors into account. Furthermore, this approach can identify the most preferable design space in which a specific solution for the actual application of the rendezvous control should be chosen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jezewski D J, Brazzel J P, Prust E E, et al. A survey of rendezvous trajectory planning. In: AAS/AIAA Astrodynamics Specialist Conference, Durango, Colorado, 1991, AAS Paper 91-505

  2. Luo Y Z, Tang G J, Lei Y J. Optimal multi-objective nonlinear impulsive rendezvous. J Guid Control Dyn, 2007, 30: 994–1002

    Article  ADS  Google Scholar 

  3. Miele A. Optimal starting conditions for the rendezvous maneuver, part 1: Optimal control approach. J Optim Theory Appl, 2008, 137: 593–624

    Article  MATH  MathSciNet  Google Scholar 

  4. Lion P M, Handelsman M. Primer vector on fixed-time impulsive trajectories. AIAA J, 1968, 6: 127–132

    Article  ADS  MATH  Google Scholar 

  5. Jezewski D J, Rozendaal H L. An efficient method for calculating optimal free-space n-impulse trajectories. AIAA J, 1968, 6: 2160–2165

    Article  ADS  MATH  Google Scholar 

  6. Gross L R, Prussing J E. Optimal multiple-impulse direct ascent fixed-time rendezvous. AIAA J, 1974, 12: 885–889

    Article  ADS  MATH  Google Scholar 

  7. Prussing J E, Chiu J H. Optimal multiple-impulse time-fixed rendezvous between circular orbits. J Guid Control Dyn, 1986, 9: 17–22

    Article  ADS  MATH  Google Scholar 

  8. Hughes S P, Mailhe L M, Guzman J J. A comparison of trajectory optimization methods for the impulsive minimum propellant rendezvous problem. Adv Astronaut Sci, 2003, 113: 85–104

    Google Scholar 

  9. Fehse W. Automated Rendezvous and Docking of Spacecraft. New York: Cambridge University Press, 2003. 77–98: 440–449

    Google Scholar 

  10. Tang G J, Luo Y Z, Li H Y. Robust optimal linearized impulse rendezvous. Aerosp Sci Technol, 2007, 11: 563–569

    Article  MATH  Google Scholar 

  11. Li H Y, Luo Y Z, Zhang J, et al. Optimal multi-objective linearized impulsive rendezvous under uncertainty. Acta Astronaut, 2010, 66: 439–445

    Article  ADS  Google Scholar 

  12. Goodman J L. History of space shuttle rendezvous and proximity operations. J Spacecr Rockets, 2006, 43: 944–959

    Article  ADS  Google Scholar 

  13. Rangavajhala S, Mullur A, Messac A. The challenge of equality constraints in robust design optimization: Examination and new approach. In: 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Confer, 18-21 April 2005, Austin, Texas, AIAA 2005-2133

  14. Park G J, Lee T H, Lee K H, et al. Robust design: An overview. AIAA J, 2006, 44: 181–191

    Article  ADS  Google Scholar 

  15. Geller D K. Linear covariance techniques for orbital rendezvous analysis and autonomous on-board mission planning. J Guid Control Dyn, 2006, 29: 1404–1414

    Article  ADS  Google Scholar 

  16. Li J R, Li H Y, Tang G J. Optimal multi-objective trajectory design based on close-looped control for autonomous rendezvous. Sci China-Technol Sci, 2011, 54: 3091–3097

    Article  Google Scholar 

  17. Junkins J L, Akella M R, Alfriend K T. Non-Gaussian error propagation in orbital mechanics. J Astronaut Sci, 1996, 44: 541–562

    Google Scholar 

  18. Junkins J, Singla P. How nonlinear is it? A tutorial on nonlinearity of orbit and attitude dynamics. J Stronaut Sci, 2004, 52: 7–60

    MathSciNet  Google Scholar 

  19. Park R S, Scheeres D J. Nonlinear mapping of gaussian statistics: Theory and applications to spacecraft trajectory design. J Guid Control Dyn, 2006, 29: 1367–1375

    Article  ADS  Google Scholar 

  20. Fujimoto K, Scheeres D J, Alfriend K T. Analytical nonlinear propagation of uncertainty in the two-body problem. J Guid Control Dyn, 2012, 35: 497–509

    Article  ADS  Google Scholar 

  21. Prussing J E, Conway B A. Orbital Mechanics. New York: Oxford University Press, 1993. 139–153

    MATH  Google Scholar 

  22. Tae S N. Fuel-optimal multi-impulse orbit rendezvous between neighboring orbits: A numerical approach. Adv Astron Sci, 1997, 97: 707–718

    Google Scholar 

  23. Jin Y C, Branke J. Evolutionary optimization in uncertain environments-a survey. IEEE Trans on Evol Comput, 2005, 9: 303–317

    Article  Google Scholar 

  24. Battin R H. An Introduction to the Mathematics and Methods of Astrodynamics (revised edition). Reston: American Institute of Aeronautics and Astronautics, 1999. 681–684

    Book  MATH  Google Scholar 

  25. Luo Y Z, Zhang J, Li H Y, et al. Interactive optimization approach for optimal impulsive rendezvous using primer vector and evolutionary algorithms. Acta Astronaut, 2010, 67: 396–405

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YaZhong Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Y., Yang, Z. & Li, H. Robust optimization of nonlinear impulsive rendezvous with uncertainty. Sci. China Phys. Mech. Astron. 57, 731–740 (2014). https://doi.org/10.1007/s11433-013-5295-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5295-y

Keywords

Navigation