Skip to main content
Log in

Optimization of the transmitted wavefront for the infrared adaptive optics system

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The adaptive optics system for the second-generation Very Large Telescope-interferometer (VLTI) instrument GRAVITY consists of a novel cryogenic near-infrared wavefront sensor to be installed at each of the four unit telescopes of the Very Large Telescope (VLT). Feeding the GRAVITY wavefront sensor with light in the 1.4–2.4 μm band, while suppressing laser light originating from the GRAVITY metrology system requires custom-built optical componets. In this paper, we present the development of a quantitative near-infraredpoint diffraction interferometric characterization technique, which allows measuring the transmitted wavefront error of the silicon entrance windows of the wavefront sensor cryostat. The technique can be readily applied to quantitative phase measurements in the near-infrared regime. Moreover, by employing a slightly off-axis optical setup, the proposed method can optimize the required spatial resolution and enable real time measurement capabilities. The feasibility of the proposed setup is demonstrated, followed by a theoretical analysis and experimental results. Our experimental results show that the phase error repeatability in the nanometer regime can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gillessen S, Eisenhauer F, Perrin G, et al. GRAVITY: A four-telescope beam combiner instrument for the VLTI. SPIE, 2010, 7734: 77340–77350

    Article  Google Scholar 

  2. Kendrew S, Hippler S, Brandner W, et al. The GRAVITY Coudé Infrared Adaptive Optics (CIAO) system for the VLT interferometer. Proc SPIE, 2012, 8446: 88467

    Google Scholar 

  3. Hippler S, Brandner W, Clénet Y, et al. Near-infrared wavefront sensing for the VLT interferometer. SPIE, 2008, 7015: 701555

    Article  Google Scholar 

  4. Clénet Y, Gendron E, Rousset G, et al. Dimensioning the gravity adaptive optics wavefront sensor. SPIE, 2010, 7736: 77364A

    Article  Google Scholar 

  5. Rengaswamy S, Haguenauer P, Brillant S, et al. Evaluation of performance of the MACAO systems at the VLTI. Proc SPIE, 2010, 7734: 773436

    Article  Google Scholar 

  6. Bartko H, Gillessen S, Rabien S, et al. The fringe detection laser metrology for the GRAVITY interferometer at the VLTI. Proc SPIE, 2010, 7734: 773421

    Article  Google Scholar 

  7. Pengqian Y, Hippler S, Deen C, et al. Optimizing the transmission of the GRAVITY/VLTI near-infrared wavefront sensor. Proc SPIE, 2012, 8445: 844531

    Article  Google Scholar 

  8. Malacara D. Optical Shop Testing. 2nd ed. New York: Wiley, 1992

    Google Scholar 

  9. Murty M V R K. A compact lateral shearing interferometer based on the Michelson interferometer. Appl Opt, 1970, 9: 1146–1148

    Article  ADS  Google Scholar 

  10. Smartt R N, Steel W H. Theory and application of point diffraction interferometers. Jpn J Appl Phys, 1975, 14: 351–356

    Article  Google Scholar 

  11. Popescu G, Ikeda T, Dasari R R, et al. Diffraction phase microscopy for quantifying cell structure and dynamics. Opt Lett, 2006, 31: 775–777

    Article  ADS  Google Scholar 

  12. Daodang W, Yongying Y, Chen C, et al. Point diffraction interferometer with adjustable fringe contrast for testing spherical surfaces. Appl Opt, 2011, 50: 2342–2348

    Article  Google Scholar 

  13. Mitsuo T, Hideki I, Seiji K. Fourier transform methods of fringepattern analysis for computer-based topography and interferometry. J Opt Soc Am, 1982, 72: 156–160

    Article  Google Scholar 

  14. Ghiglia D C, Pritt M D. Two-Dimensional Phase Unwrapping: Theory, Algorithm, and Software. New York: Wiley, 1998

    Google Scholar 

  15. Schnars U, Jüptner W P O. Digital recording and numerical reconstruction of holograms. Meas Sci Technol, 2002, 13: R85

    Article  ADS  Google Scholar 

  16. Kemao Q, Wang H, Gao W. Windowed Fourier transform for fringe pattern analysis: Theoretical analyses. Appl Opt, 2008, 47: 5408–5419

    Article  ADS  Google Scholar 

  17. Kemao Q. Windowed Fourier transform method for demodulation of carrier fringes. Opt Eng, 2004, 43: 1472–1473

    Article  Google Scholar 

  18. Huntley J M, Saldner H. Temporal phase-unwrapping algorithm for automated interferogram analysis. Appl Opt, 1993, 32: 3047–3052

    Article  ADS  Google Scholar 

  19. Ming Z, Lei H, Qican Z, et al. Quality-guided phase unwrapping technique: Comparison of quality maps and guiding strategies. Appl Opt, 2011, 50: 6214–6224

    Article  Google Scholar 

  20. Natan T S, Yizheng Z, Matthew T, et al. Two-step-only phaseshifting interferometry with optimized detector bandwidth for microscopy of live cells. Opt Express, 2009, 17: 15585–15591

    Article  Google Scholar 

  21. Robert J N. Zernike polynomials and atmospheric turbulence. J Opt Soc Am, 1976, 66: 207–211

    Article  Google Scholar 

  22. Jan H. Least squares wave front errors of minimum norm. J Opt Soc Am, 1980, 70: 28–35

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PengQian Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, P., Hippler, S. & Zhu, J. Optimization of the transmitted wavefront for the infrared adaptive optics system. Sci. China Phys. Mech. Astron. 57, 608–614 (2014). https://doi.org/10.1007/s11433-013-5264-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5264-5

Keywords

Navigation