Skip to main content
Log in

Nonlinear spectral-like schemes for hybrid schemes

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

In spectral-like resolution-WENO hybrid schemes, if the switch function takes more grid points as discontinuity points, the WENO scheme is often turned on, and the numerical solutions may be too dissipative. Conversely, if the switch function takes less grid points as discontinuity points, the hybrid schemes usually are found to produce oscillatory solutions or just to be unstable. Even if the switch function takes less grid points as discontinuity points, the final hybrid scheme is inclined to be more stable, provided the spectral-like resolution scheme in the hybrid scheme has moderate shock-capturing capability. Following this idea, we propose nonlinear spectral-like schemes named weighted group velocity control (WGVC) schemes. These schemes show not only high-resolution for short waves but also moderate shock capturing capability. Then a new class of hybrid schemes is designed in which the WGVC scheme is used in smooth regions and the WENO scheme is used to capture discontinuities. These hybrid schemes show good resolution for small-scales structures and fine shock-capturing capabilities while the switch function takes less grid points as discontinuity points. The seven-order WGVC-WENO scheme has also been applied successfully to the direct numerical simulation of oblique shock wave-turbulent boundary layer interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dolling D S. Fifty years of shock-wave/boundary-layer interaction research: What next? AIAA J, 2001, 39: 1517–1531

    Article  ADS  Google Scholar 

  2. Sun Z S, Ren Y X, Larricq C, et al. A class of finite difference schemes with low dispersion and controllable dissipation for DNS of compressible turbulence. J Comput Phys, 2011, 230(12): 4616–4635

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Fu D X, Ma Y W. A high order accurate difference scheme for complex flow fields. J Comput Phys, 1997. 134(1): 1–15

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. He Z W, Li X L, Fu D X, et al. A 5th order monotonicity-preserving upwind compact difference scheme. Sci China-Phys Mech Astron, 2011, 54(3): 511–522

    Article  ADS  Google Scholar 

  5. Tam C K W, Webb J C. Dispersion-relation-preserving finite difference schemes for computational acoustics. J Comput Phys, 1993, 107: 262–281

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Li Y. Wavenumber-extended high-order upwind-biased finite difference schemes for convective scalar transport. J Comput Phys, 1997, 133: 235–255

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Lele S K. Compact finite difference schemes with spectral-like resolution. J Comput Phys, 1992, 103: 16–42

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Honein A E, Moin P. Higher entropy conservation and numerical stability of compressible turbulence simulations. J Comput Phys, 2004, 201(2): 531–545

    Article  ADS  MATH  Google Scholar 

  9. Kim S, Lee S, Kim K H. Wavenumber-extended high-order oscillation control finite volume schemes for multi-dimensional aeroacoustic computations. J Comput Phys, 2008, 227(8): 4089–4122

    Article  ADS  MATH  Google Scholar 

  10. Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes. J Comput Phys, 1996, 126: 202–228

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Ren Y X, Liu M E, Zhang H. A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws. J Comput Phys, 2003, 192: 365–386

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Adams N A, Shariff K. A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems. J Comput Phys, 1996, 127(1): 27–51

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Pirozzoli S. Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J Comput Phys, 2003, 178: 81–117

    Article  ADS  MathSciNet  Google Scholar 

  14. Kim D, Kwon J H. A high-order accurate hybrid scheme using a central flux scheme and a WENO scheme for compressible flowfield analysis. J Comput Phys, 2005, 210: 554–583

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Zhou Q, Yao Z, He F, et al. A new family of high-order compact upwind difference schemes with good spectral resolution. J Comput Phys, 2007, 227(2): 1306–1339

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Fu D X, Ma Y W, Kobayashi T. Nonphysical oscillations in numerical solutions: Reason and improvement. Comput Fluid Dyn J, 1996, 4: 427–450

    Google Scholar 

  17. Ma Y, Fu D X. Fourth order accurate compact scheme with group velocity control (GVC). Sci China Ser A, 2001, 44(9): 1197–1204

    Article  Google Scholar 

  18. Li X, Fu D, Ma Y. Optimized group velocity control scheme and DNS of decaying compressible turbulence of relative high turbulent Mach number. Int J Numer Meth Fluids, 2005, 48(8): 835–852

    Article  MATH  Google Scholar 

  19. Trefethen L N. Group velocity in finite-difference schemes. SIAM Rev, 1982, 24(2): 113–136

    Article  MATH  MathSciNet  Google Scholar 

  20. Balsara D S, Shu C W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J Comput Phys, 2000, 160: 405–452

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. J Comput Phys, 1988, 77: 439–471

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Martín M P, Taylor E M, Wu M, et al. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence. J Comput Phys, 2006, 220: 270–289

    Article  ADS  MATH  Google Scholar 

  23. Pirozzoli S. On the spectral properties of shock-capturing schemes. J Comput Phys, 2006, 219: 489–497

    Article  ADS  MATH  Google Scholar 

  24. Sod G A. A survey of several finite difference methods for systems of non-linear hyperbolic conservation laws. J Comput Phys, 1978, 27: 1–31

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J Comput Phys, 1989, 83: 32–78

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Shi J, Zhang Y T, Shu C W. Resolution of high order WENO schemes for complicated flow structures. J Comput Phys, 2003, 186: 690–696

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Dupont P, Haddad C, Debiève J F. Space and time organization in a shock-induced separated boundary layer. J Fluid Mech, 2006, 559: 255–277

    Article  ADS  MATH  Google Scholar 

  28. Pirozzoli S. Grasso F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25. Phys Fluids, 2006, 18(6): 065113

    Article  ADS  Google Scholar 

  29. Pirozzoli S, Numerical methods for high-speed flows. Annu Rev Fluid Mech, 2011, 43: 163–194

    Article  ADS  MathSciNet  Google Scholar 

  30. Hunt J C R, Way A, Moin P. Eddies, stream, and convergence zones in uurbulent flows. Center for Turbulence Research Report CTR-S88 (1988), 1988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XinLiang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Z., Li, X. & Liang, X. Nonlinear spectral-like schemes for hybrid schemes. Sci. China Phys. Mech. Astron. 57, 753–763 (2014). https://doi.org/10.1007/s11433-013-5234-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5234-y

Keywords

Navigation