Skip to main content
Log in

Electron transport in dye-sensitized solar cells based on TiO2 nanowires

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Anatase titanium dioxide nanowire arrays were prepared by hydrothermally oxidizing titanium foils in aqueous alkali and transferred onto fluorinated tin oxide (FTO) glass for use as the photoanodes of front side illuminated dye-sensitized solar cells (DSCs). Electrochemical impedance spectroscopy (EIS) measurement was applied to compare the electron transport and recombination properties of DSCs using TiO2 nanowire films and TiO2 nanoparticle films as photoanodes. It was found that the nanowire array films possess smaller electron transport resistance (R t) and larger electron diffusion length (L e) in the photoanodes, suggesting that the nanowire arrays can enhance the electron transport rate and have a potential to improve the charge collection efficiency of DSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oregan B, Gratzel M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737–740

    Article  ADS  Google Scholar 

  2. Yella A, Lee H W, Tsao H N, et al. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 2011, 334(6056): 629–634

    Article  ADS  Google Scholar 

  3. Gratzel M. Photoelectrochemical cells. Nature, 2001, 414(6861): 338–344

    Article  ADS  Google Scholar 

  4. Thavasi V, Renugopalakrishnan V, Jose R, et al. Controlled electron injection and transport at materials interfaces in dye sensitized solar cells. Mater Sci Eng R Reports, 2009, 63(3): 81–99

    Article  Google Scholar 

  5. Mor G K, Varghese O K, Paulose M, et al. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol Energ Mat Sol C, 2006, 90(14): 2011–2075

    Article  Google Scholar 

  6. Roy P, Kim D, Lee K, et al. TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale, 2010, 2(1): 45–59

    Article  ADS  Google Scholar 

  7. Lei B X, Liao J Y, Zhang R, et al. Ordered crystalline TiO2 nanotube arrays on transparent FTO glass for efficient dye-sensitized solar cells. J Phys Chem C, 2010, 114(35): 15228–15233

    Article  Google Scholar 

  8. Varghese O K, Paulose M, Grimes C A. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat Nanotech, 2009, 4(9): 592–597

    Article  ADS  Google Scholar 

  9. Zhang X Y, Yao B D, Zhao L X, et al. Electrochemical fabrication of single-crystalline anatase TiO2 nanowire arrays. J Electrochem Soc, 2001, 148(7): G398–G400

    Article  Google Scholar 

  10. Wang W L, Lin H, Zhang L Z, et al. Electrochemical impedance spectroscopy analysis of an electrophoretic titania nanotube/nanoparticle composite film. Acta Phys-Chim Sin, 2010, 26(5): 1249–1253

    MathSciNet  Google Scholar 

  11. Chong S V, Suresh N, Xia J, et al. TiO2 Nanobelts/CdSSe quantum dots nanocomposite. J Phys Chem C, 2007, 111(28): 10389–10393

    Article  Google Scholar 

  12. Wang J, Tafen D N, Lewis J P, et al. Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J Am Chem Soc, 2009, 131(34): 12290–12297

    Article  Google Scholar 

  13. Kang T S, Smith A P, Taylor B E, et al. Fabrication of highly-ordered TiO2 nanotube arrays and their use in dye-sensitized solar cells. Nano Lett, 2009, 9(2): 601–606

    Article  ADS  Google Scholar 

  14. Enache-Pommer E, Boercker J E, Aydil E S. Electron transport and recombination in polycrystalline TiO2 nanowire dye-sensitized solar cells. Appl Phys Lett, 2007, 91: 123116

    Article  ADS  Google Scholar 

  15. Shankar K, Basham J I, Allam N K, et al. Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J Phys Chem C, 2009, 113(16): 6327–6359

    Article  Google Scholar 

  16. Park J H, Lee T W, Kang M G. Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells. Chem Commun, 2008, 25: 2867–2869

    Article  Google Scholar 

  17. Liu B, Aydil E S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J Am Chem Soc, 2009, 131(11): 3985–3990

    Article  Google Scholar 

  18. Liu B, Boercker J E, Aydil E S. Oriented single crystalline titanium dioxide nanowires. Nanotechnology, 2008, 19(50): 505604

    Article  Google Scholar 

  19. Tao R H, Wu J M, Xue H X, et al. A novel approach to titania nan owire arrays as photoanodes of back-illuminated dye-sensitized solar cells. J Power Sources, 2010, 195(9): 2989–2995

    Article  Google Scholar 

  20. Shao F, Sun J, Gao L, et al. Growth of various TiO2 nanostructures for dye-sensitized solar cells. J Phys Chem C, 2011, 115: 1819–1823

    Article  Google Scholar 

  21. Barbe’ C J, Arendse F, Comte P, et al. Nanocrystalline titanium oxide electrodes for photovoltaic applications. J Am Ceram Soc, 1997, 80: 3157–3171

    Article  Google Scholar 

  22. Jih-Jen W, Guan-Ren C, Chia-Chun L, et al. Performance and electron transport properties of TiO2 nanocomposite dye-sensitized solar cells. Nanotechnology, 2008: 105701–105702

    Google Scholar 

  23. Fabregat-Santiago F, Bisquert J, Garcia-Belmonte G, et al. Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Sol Energ Mat Sol C, 2005, 87(1–4): 117–131

    Article  Google Scholar 

  24. Martinson A B F, Góes M S, Fabregat-Santiago F, et al. Electron transport in dye-sensitized solar cells based on ZnO nanotubes: Evidence for highly efficient charge collection and exceptionally rapid dynamics. J Phys Chem A, 2009, 113: 4015–4021

    Article  Google Scholar 

  25. Fabregat-Santiago F, Barea E M, Bisquert J, et al. High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping. J Am Chem Soc, 2008, 130(34): 11312–11316

    Article  Google Scholar 

  26. Adachi M, Sakamoto M, Jiu J, et al. Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J Phys Chem B, 2006, 110: 13872–13880

    Article  Google Scholar 

  27. Wang Q, Ito S, Gratzel M, et al. Characteristics of high efficiency dye-sensitized solar cells. J Phys Chem B, 2006, 110: 25210–25221

    Article  Google Scholar 

  28. Zhang Z P, Zakeeruddin S M, O’Regan B C, et al. Influence of 4-guanidinobutyric acid as coadsorbent in reducing recombination in dye-sensitized solar cells. J Phys Chem B, 2005, 109(46): 21818–21824

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, X., Wang, X., Li, X. et al. Electron transport in dye-sensitized solar cells based on TiO2 nanowires. Sci. China Phys. Mech. Astron. 57, 892–897 (2014). https://doi.org/10.1007/s11433-013-5216-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5216-0

Keywords

Navigation