Skip to main content
Log in

Potential wells for classical acoustic waves

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The acceleration theorem of Bloch waves is utilized to construct random potential wells for classical acoustic waves in systems composed of alternating ‘cavities’ and ‘couplers’. One prominent advantage of this method is these ‘cavities’ and ‘couplers’ are all monolayer structures. It allows forming more compact classical potential wells, which leads to the miniaturization of acoustic devices. We systematically investigate properties of harmonic, tangent, hyperbolic function, and square classical potential wells in quasi-periodic superlattices. Results show these classical potential wells are analogues of quantum potential wells. Thus some technologies and concepts in quantum potential well fields may be generalized to classical acoustic wave fields. In addition, some abnormal cases regarding forming classical potential wells are also found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Griffiths D J. Introduction to Quantumm Mechanics. New Jersey: Pearson Prentice Hall, 2005

    Google Scholar 

  2. Lanzillotti-Kimura N D, Fainstein A, Lemaitre A, et al. Nanowave devices for terahertz acoustic phonons. Appl Phys Lett, 2006, 88: 083113

    Article  ADS  Google Scholar 

  3. Stanton N M, Kini R N, Kent A J, et al. Terahertz phonon optics in GaAs/AlAs superlattice structures. Phys Rev B, 2003, 68: 113302

    Article  ADS  Google Scholar 

  4. Fokker P A, Dijkhuis J I, De Wijn H W. Stimulated emission of phonons in an acoustical cavity. Phys Rev B, 1997, 55: 2925–2933

    Article  ADS  Google Scholar 

  5. Camps I, Makler S S, Pastawski H M, et al. GaAs-AlxGa1−x As double-barrier heterostructure phonon laser: A full quantum treatment. Phys Rev B, 2001, 64: 125311

    Article  ADS  Google Scholar 

  6. Chen J, Khurgin J B, Merlin R. Stimulated-emission-induced enhancement of the decay rate of longitudinal optical phonons in III-V semiconductors. Appl Phys Lett, 2002, 80: 2901–2903

    Article  ADS  Google Scholar 

  7. Lanzillotti-Kimura N D, Fainstein A, Balseiro C A, et al. Phonon engineering with acoustic nanocavities: Theoretical considerations on phonon molecules, band structures, and acoustic Bloch oscillations. Phys Rev B, 2007, 75: 024301

    Article  ADS  Google Scholar 

  8. Mo Y, Huang W Q, Huang G F, et al. Ballistic phonon transmission in quasiperiodic acoustic nanocavities. J Appl Phys, 2011, 109: 084310

    Article  ADS  Google Scholar 

  9. Mizuno S, Tamura S. Impurity levels and resonant transmission of acoustic phonons in a double-barrier system. Phys Rev B, 1992, 45: 13423–13430

    Article  ADS  Google Scholar 

  10. Mizuno S. Eigenfrequency and decay factor of the localized phonon in a superlattice with a defect layer. Phys Rev B, 2002, 65:193302

    Article  ADS  Google Scholar 

  11. Wang X, Chen K, Gu B. Localized mixed acoustic modes in superlattices with structural defects. J Appl Phys, 2002, 92: 5113–5118

    Article  ADS  Google Scholar 

  12. Tamura S, Watanabe H, Kawasaki T. Acoustic-phonon cavity modes in one-dimensional multilayered elastic structures. Phys Rev B, 2005, 72: 165306

    Article  ADS  Google Scholar 

  13. Zhao D G, Wang W, Liu Z, et al. Peculiar transmission property of acoustic waves in a one-dimensional layered phononic crystal. Physica B, 2007, 390: 159–166

    Article  ADS  Google Scholar 

  14. Chen S, Lin S Y. A new type of multilayered resonant structure (in Chinese). Sci Sin-Phys Mech Astron, 2011, 41: 1287–1295

    Article  Google Scholar 

  15. Manzanares-Martínez B, Ramos-Mendieta F. Propagation of acoustic waves through finite superlattices: Transmission enhancement by surface resonance assistance. Phys Rev B, 2002, 66: 092302

    Article  ADS  Google Scholar 

  16. Maldovan M, Thomas E L. Simultaneous localization of photons and phonons in two-dimensional periodic structures. Appl Phys Lett, 2006, 88: 251907

    Article  ADS  Google Scholar 

  17. Qian X, Li J, Lu M, et al. Acousto-optic interaction in photonic crystals with defects. J Appl Phys, 2009, 106: 043107

    Article  ADS  Google Scholar 

  18. Chen J, Ren F, Li R, et al. Dual localizations for second-harmonic generations using left-handed materials. Appl Phys Lett, 2005, 87: 251104

    Article  ADS  Google Scholar 

  19. Zhao L, Gu B. Giant enhancement of second harmonic generation in multiple photonic quantum well structures made of nonlinear material. Appl Phys Lett, 2006, 88: 122904

    Article  ADS  Google Scholar 

  20. Lanzillotti-Kimura N D, Fainstein A, Jusserand B. Phonon Bloch oscillations in acoustic-cavity structures. Phys Rev B, 2005, 71: 041305 (R)

    Article  ADS  Google Scholar 

  21. Lanzillotti-Kimura N D, Fainstein A, Perrin B, et al. Bloch oscillations of THz acoustic phonons in coupled nanocavity structures. Phys Rev Lett, 2010, 104: 197402

    Article  ADS  Google Scholar 

  22. Sanchis-Alepuz H, Kosevich Y A, Sánchez-Dehesa J. Acoustic analogue of electronic Bloch oscillations and resonant Zener tunneling in ultrasonic superlattices. Phys Rev Lett, 2007, 98: 134301

    Article  ADS  Google Scholar 

  23. De Lima M M, Kosevich J Y A, Santos P V, et al. Surface acoustic Bloch oscillations, the Wannier-Stark ladder, and Landau-Zener tunneling in a solid. Phys Rev Lett, 2010, 104: 165502

    Article  ADS  Google Scholar 

  24. Gutiérrez L, Díaz-de-Anda A, Flores J, et al. Wannier-Stark ladders in one-dimensional elastic systems. Phys Rev Lett, 2006, 97: 114301

    Article  ADS  Google Scholar 

  25. Mateos J L, Monsivais G. Stark-ladder resonances in elastic waves. Physica A, 1994, 207: 445–451

    Article  ADS  Google Scholar 

  26. Monsivais G, Rodríguez-Ramos R, Esquivel-Sirvent R, et al. Stark-ladder resonances in piezoelectric composites. Phys Rev B, 2003, 68: 174109

    Article  ADS  Google Scholar 

  27. Lowe M J S. Matrix techniques for modeling ultrasonic waves in multilayered media. IEEE Trans Ultrason Ferroelectr Freq Control, 1995, 42 (4): 525–542

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Lin, S., Mo, R. et al. Potential wells for classical acoustic waves. Sci. China Phys. Mech. Astron. 57, 104–112 (2014). https://doi.org/10.1007/s11433-013-5208-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5208-0

Keywords

Navigation