Skip to main content
Log in

Friction anisotropy dependence on lattice orientation of graphene

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The observation of friction anisotropy on graphene by friction measurement at atomic scale has been reported in this paper. Atomic-scale friction measurement revealed friction anisotropy with a periodicity of 60°, which is consistent with the hexagonal periodicity of the graphene. Both experiments and theory show that the value of the friction force is related to the graphene lattice orientation, and the friction force along armchair orientation is also larger than the one along zigzag orientation. These results will play a critical role in the use of graphene to manufacture nanoscale devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ko J S, Gellman A J. Friction anisotropy at Ni (100)/Ni (100) interfaces. Langmuir, 2000, 16: 8343–8351

    Article  Google Scholar 

  2. Kwaka M, Shindo H. Frictional force microscopic detection of frictional asymmetry and anisotropy at (1014) surface of calcite. Phys Chem Chem Phys, 2004, 6: 129–133

    Article  Google Scholar 

  3. Shindo H, Namai Y. Frictional force microscopic observation of anisotropy at corrugated CaSO4 (001) surface. Phys Chem Chem Phys, 2003, 5: 616–619

    Article  Google Scholar 

  4. Park J Y, Ogletree D F, Salmeron M, et al. High frictional anisotropy of periodic and aperiodic directions on a quasicrystal surface. Science, 2005, 309: 1354–1356

    Article  ADS  Google Scholar 

  5. Lucas M, Zhang X H, Palaci I, et al. Hindered rolling and friction an isotropy in supported carbon nanotubes. Nat Mater, 2009, 8: 876–881

    Article  ADS  Google Scholar 

  6. Mancinelli C M, Gellman A J. Friction anisotropy at Pd (100)/Pd (100) interfaces. Langmuir, 2004, 20: 1680–1687

    Article  Google Scholar 

  7. Li X L, Wang X R, Zhang L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 2008, 319: 1229–1232

    Article  ADS  Google Scholar 

  8. Wang X R, Ouyang Y J, Li X L, et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett, 2008, 100: 206803

    Article  ADS  Google Scholar 

  9. Lin Y M, Dimitrakopoulos C, Jenkins K A, et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science, 2010, 327: 662

    Article  ADS  Google Scholar 

  10. Grosse K L, Bae M H, Lian F, et al. Nanoscale Joule heating, Peltier cooling and current crowding at graphene-metal contacts. Nat Nanotechnol, 2011, 6: 287–390

    Article  ADS  Google Scholar 

  11. Wu Y Q, Lin Y M, Bol A A, et al. High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 2011, 472: 74–78

    Article  ADS  Google Scholar 

  12. Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene. Nat Mater, 2007, 6: 652–655

    Article  ADS  Google Scholar 

  13. Merchant C A, Healy K, Wanunu M, et al. DNA translocation through graphene nanopores. Nano Lett, 2010, 10: 3163–3167

    Article  Google Scholar 

  14. Garaj S, Hubbard W, Reina A, et al. Graphene as a subnanometre trans-electrode membrane. Nature, 2010, 467: 190–193

    Article  ADS  Google Scholar 

  15. Miler J R, Outlaw R A, Holloway B C. Graphene double-layer capacitor with ac line-filtering performance. Science, 2010, 329: 1637–1639

    Article  ADS  Google Scholar 

  16. Wang X, Zhi L J, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett, 2008, 8: 323–327

    Article  ADS  Google Scholar 

  17. Han M Y, Oezyilmaz B, Zhang Y, et al. Energy band gap engineering in graphene nanoribbons. Phys Rev Lett, 2007, 98: 206805

    Article  ADS  Google Scholar 

  18. Ponomarenko L A, Schedin F, Katsnelson M I, et al. Chaotic dirac billiard in graphene quantum dots. Science, 2008, 320: 356–358

    Article  ADS  Google Scholar 

  19. Kobayashi Y, Fukui K, Enoki T, et al. Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys Rev B, 2005, 71: 193406

    Article  ADS  Google Scholar 

  20. Son Y, Cohen M L, Louie S G. Half-metallic graphene nanoribbons. Nature, 2006, 444: 347–349

    Article  ADS  Google Scholar 

  21. Datta S S, Strachan D R, Khamis S M, et al. Crystallographic etching of few-layer graphene. Nano Lett, 2008, 8: 1912–1915

    Article  ADS  Google Scholar 

  22. Ci L, Xu Z P, Wang L L, et al. Controlled nanocutting of graphene. Nano Res, 2008, 1: 116–122

    Article  Google Scholar 

  23. Campos L C, Manfrinato V R, Sanchez J D, et al. Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett, 2009, 9: 2600–2604

    Article  ADS  Google Scholar 

  24. Gao L, Ren W C, Liu B L, et al. Crystallographic tailoring of graphene by nonmetal SiOx nanoparticles. J Am Chem Soc, 2009, 131: 13934–13936

    Article  Google Scholar 

  25. Giesbers A J M, Zeitler U, Neubeck S, et al. Nanolithography and manipulation of graphene using an atomic force microscope. Solid State Commun, 2008, 147: 366–369

    Article  ADS  Google Scholar 

  26. Tapaszto L, Dobrik G, Lambin P, et al. Tailoring the atomic structure of graphene nanoribbons by scanning tunneling microscope lithography. Nat Nanotechnol, 2008, 3: 397–401

    Article  Google Scholar 

  27. Weng L, Zhang L Y, Chen Y P, et al. Atomic force microscope local oxidation nanolithography of graphene. Appl Phys Lett, 2008, 3: 093107

    Article  ADS  Google Scholar 

  28. Fischbein M D, Drndic M. Electron beam nanosculpting of suspended graphene sheets. Appl Phys Lett, 2008, 93: 113107

    Article  ADS  Google Scholar 

  29. Bell D C, Lemme M C, Stern L A, et al. Precision cutting and patterning of graphene with helium ions. Nanotechnology, 2009, 20: 455301

    Article  ADS  Google Scholar 

  30. Lemme M C, Bell D C, Williams J R, et al. Etching of graphene devices with a helium ion beam. ACS Nano, 2009, 3: 2674–2676

    Article  Google Scholar 

  31. Lu G, Zhou X Z, Li H, et al. Nanolithography of single-layer graphene oxide films by atomic force microscopy. Langmuir, 2010, 26: 6164–6166

    Article  Google Scholar 

  32. Choi J S, Kim J S, Byun I S, et al. Friction anisotropy-driven domain imaging on exfoliated monolayer graphene. Science, 2011, 333: 607–610

    Article  ADS  Google Scholar 

  33. Holscher H, Schwarz U D, Zwomer O, et al. Condequences of the stick-slip movement for the scanning force microscopy imaging of graphite. Phys Rew Lett, 1998, 57: 2477

    Article  ADS  Google Scholar 

  34. Novoselov K S, Geim A K, Morozov S V. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669

    Article  ADS  Google Scholar 

  35. Zhang Y, Liu L, Xi N, et al. Cutting graphene using an atomic force microscope based nanorobot. In: Proceedings of IEEE International Conference on Nanotechnology. Seoul: IEEE, 2010. 639–644

    Chapter  Google Scholar 

  36. Filleter T, McChesney J L, Bostwick A, et al. Friction and dissipation in epitaxial graphene films. Phys Rew Lett, 2009, 102: 086102

    Article  ADS  Google Scholar 

  37. Lee C, Li Q, Kalb W, et al. Frictional characteristics of atomically thin sheets. Science, 2010, 328: 76–80

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to LianQing Liu or Ning Xi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Liu, L., Xi, N. et al. Friction anisotropy dependence on lattice orientation of graphene. Sci. China Phys. Mech. Astron. 57, 663–667 (2014). https://doi.org/10.1007/s11433-013-5206-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5206-2

Keywords

Navigation