Skip to main content
Log in

Underwater three-dimensional imaging using narrowband MIMO array

  • Article
  • Special Topic: Modern Acoustics
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

To obtain high cross-range resolution, the underwater 3-D acoustic imaging system usually requires a rectangular array with a great number of sensors and a large physical size. To reduce the sensor number and the array physical size simultaneously, this paper proposes a new underwater 3-D acoustic imaging approach based on a novel multiple-input multiple-output (MIMO) array. Specifically, the MIMO array is composed of four uniform linear arrays (ULAs) located on four sides of a rectangle. The transmitting array composed of two ULAs is located on a pair of opposite sides, and the receiving array composed of another two ULAs is located on the other two sides. Furthermore, narrowband waveforms coded with orthogonal polyphase sequences are employed as transmitting waveforms. When the subcode numbers in the polyphase coded sequences are sufficient, the MIMO array has the same 3-D imaging ability as a rectangular array, which has a two-time bigger size than that of the former. Consequently, the MIMO array can not only save a great number of sensors, but halve the array size, when compared to a rectangular array with the same cross-range resolution. Computer simulations are provided to demonstrate the effectiveness of the proposed imaging approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sutton J L. Underwater acoustic imaging. Proc IEEE, 1979, 67: 554–566

    Article  ADS  Google Scholar 

  2. Murino V, Trucco A. Three-dimensional image generation and processing in underwater acoustic vision. Proc IEEE, 2000, 88: 1903–1948

    Article  Google Scholar 

  3. Murino V, Regazzoni C S, Trucco A, et al. A non-coherent correlation technique and focused beamforming for ultrasonic underwater imaging: A comparative analysis. IEEE Trans IEEE Trans Ultrason Ferroelect Freq Contr, 1994, 41: 621–630

    Article  Google Scholar 

  4. Murino V, Trucco A. A confidence-based approach to enhancing underwater acoustic image formation. IEEE Trans Image Process, 1999, 8: 270–285

    Article  ADS  Google Scholar 

  5. Palmese M, Trucco A. Acoustic imaging of underwater embedded objects: Signal simulation for three-dimensional sonar instrumentation. IEEE Trans Instrum Meas, 2006, 55: 1339–1347

    Article  Google Scholar 

  6. Palmese M, Trucco A. From 3-D sonar images to augmented reality models for objects buried on the seafloor. IEEE Trans Instrum Meas, 2008, 57: 820–828

    Article  Google Scholar 

  7. Palmese M, Trucco A. Three-dimensional acoustic imaging by chirp zeta transform digital beam forming. IEEE Trans Instrum Meas, 2009, 57: 2080–2086

    Article  Google Scholar 

  8. Palseme M, Trucco A. An efficient CZT beamforming design for near-field 3-D sonar imaging. IEEE J Ocean Eng, 2010, 35: 584–594

    Article  Google Scholar 

  9. Turnbull D H, Foster F S. Beam steering with pulsed two dimensional transducer arrays. IEEE Trans Ultrason Ferroelect Freq Contr, 1991, 38: 320–333

    Article  Google Scholar 

  10. Turnbull D H, Foster F S. Simulation of B-scan images from two-dimensional transducer arrays: Part II-Comparison between linear and two dimensional phased arrays. Ultrason Imag, 1992, 14: 334–353

    Google Scholar 

  11. Davidsen R E, Jensen J A, Smith S W. Two dimensional random arrays for real time volumetric imaging. Ultrason Imag, 1994, 16: 143–163

    Google Scholar 

  12. Smith S W, Davidsen R E, Emery S D, et al. Update on 2-D array transducers for medical ultrasound. In: Proceedings of IEEE on Ultrason Symp. Seattle: IEEE, 1995. 1273–1278

    Google Scholar 

  13. Light E D, Davidsen R E, Fiering J O, et al. Progress in two-dimensional arrays for real-time volumetric imaging. Ultrason Imag, 1998, 20: 1–15

    Article  Google Scholar 

  14. O’Neill D J. Element placement in thinned arrays using genetic algorithms. In: Proceedings of IEEE OCEANS’94. Brest: IEEE, 1994. 301–306

    Google Scholar 

  15. Austeng A, Holm S, Weber P, et al. 1D and 2D algorithmically optimized sparse arrays. In: Proceedings of IEEE on Ultrason Symp. Toronto: IEEE, 1997. 1683–1686

    Google Scholar 

  16. Holm S, Austeng A, Iranpour K, et al. Sparse sampling in array processing. In: Marvasti F, ed. Nonuniform Sampling: Theory and Practice. New York: Kluwer Academic/Plenum Publishers, 2001. 29–31

    Google Scholar 

  17. Trucco A. Thinning and weighting of large planar arrays by simulated annealing. IEEE Trans Ultrason Ferroelect Freq Contr, 1999, 46: 347–355

    Article  Google Scholar 

  18. Trucco A, Vittorio M. Stochastic optimization of linear sparse arrays. IEEE J Ocean Eng, 1999, 24: 291–299

    Article  Google Scholar 

  19. Trucco A, Repetto F. A stochastic approach to optimizing the aperture and the number of sensors of an aperiodic array. In: Proceedings of IEEE/MTS OCEANS’96. Ft. Lauderdale: IEEE, 1996. 1510–1515

    Google Scholar 

  20. Kirkebø J E, Austeng A. Sparse cylindrical sonar arrays. IEEE J Ocean Eng, 2008, 33: 224–231

    Article  Google Scholar 

  21. Trucco A, Palmese M, Repetto S. Devising an affordable sonar system for underwater 3-D vision. IEEE Trans Instrum Meas, 2008, 57: 2348–2354

    Article  Google Scholar 

  22. Webb J L H Jr, Munson D C. Chebyshev optimization of sparse FIR filters using linear programming with an application to beamforming. IEEE Trans Signal Process, 1996, 44: 1912–1922

    Article  ADS  Google Scholar 

  23. Holm S, Elgetun B, Dahl G. Properties of the beam pattern of weight- and layout-optimized sparse arrays. IEEE Trans Ultrason Ferroelectr Freq Control, 1997, 44: 983–991

    Article  Google Scholar 

  24. Wilson M J, McHugh R. Harmonic array design: Technique for efficient non-periodic array optimisation in digital sonar beamforming. IEE Proceedings-Radar Sonar Navig, 2006, 153: 63–68

    Article  Google Scholar 

  25. Austeng A, Holm S. Sparse 2-D arrays for 3-D phased array imaging-design method. IEEE Trans Ultrason Ferroelectr Freq Control, 2002, 49: 1073–1086

    Article  Google Scholar 

  26. Austeng A, Holm S. Sparse 2-D arrays for 3-D phased array imaging-experimental validation. IEEE Trans Ultrason Ferroelectr Freq Control, 2002, 49: 1087–1093

    Article  Google Scholar 

  27. Kay S, Saha S. Design of sparse linear arrays by Monte Carlo importance sampling. IEEE J Ocean Eng, 2002, 27: 790–799

    Article  Google Scholar 

  28. Sumanaweera T S, Schwartz J, Napolitano D. A spiral 2D phased array for 3D imaging. In: Proceedings of IEEE on Ultrason Symp. Caesars Tahoe: IEEE, 1999. 1271–1274

    Google Scholar 

  29. van Trees H L. Optimum array processing: Part 4 of detection, estimation, and modulation theory. Hoboken: John Wiley & Sons Inc, 2002. 90–91

    Book  Google Scholar 

  30. Rabideau D J, Parker P. Ubiquitous MIMO multifunction digital array radar. In: Conference Record of the 37th Asilomar Conference on Signals Syst Comput. California: IEEE, 2003. 1057–1064

    Google Scholar 

  31. Robey F C, Coutts S, Weikle D, et al. MIMO radar theory and experimental results. In: Conference Record of the 38th Asilomar Conference on Signals Syst Comput. California: IEEE, 2004. 300–304

    Google Scholar 

  32. Bekkerman I, Tabrikian J. Target detection and localization using MIMO radars and sonars. IEEE Trans Signal Process, 2006, 54: 3873–3883

    Article  ADS  Google Scholar 

  33. Li J, Stoica P, Xu L Z, et al. On parameter identifiability of MIMO radar. IEEE Signal Process Lett, 2007, 14: 968–971

    Article  ADS  Google Scholar 

  34. Li J, Stoica P. MIMO radar with co-located antennas. IEEE Signal Process Magaz, 2007, 24: 106–114

    Article  ADS  Google Scholar 

  35. Li J, Xu L Z, Stoica P, et al. Range compression and signal optimization for MIMO radar: A cramér-rao bound based study. IEEE Trans Signal Process, 2008, 56: 218–232

    Article  MathSciNet  ADS  Google Scholar 

  36. Li J, Stoica P, Zheng X Y. Signal synthesis and receiver design for MIMO radar imaging. IEEE Trans Signal Process, 2008, 56: 3959–3968

    Article  MathSciNet  ADS  Google Scholar 

  37. Wang H J, Xu H B, Lu M, et al. High-resolution imaging method based on MIMO radar (in Chinese). J Microwaves, 2009, 25: 79–83

    Google Scholar 

  38. Wang H J, Su Y, Zhu Y T, et al. MIMO radar imaging based on spectral-domain filling (in Chinese). Acta Electron Sin, 2009, 36: 1242–1246

    Google Scholar 

  39. Wang H J, Lei W T, Huang C L, et al. MIMO radar imaging model and algorithm. Chin J Electron, 2009, 26: 577–583

    Google Scholar 

  40. Wang D W, Ma X Y, Su Y. Two dimensional imaging via a narrowband MIMO radar system with two perpendicular linear arrays. IEEE Trans Image Process, 2010, 19: 1269–1279

    Article  MathSciNet  ADS  Google Scholar 

  41. Wang D W, Ma X Y, Chen A L, et al. High-resolution imaging using a wideband MIMO radar system with two distributed arrays. IEEE Trans Image Process, 2010, 19: 1280–1289

    Article  MathSciNet  ADS  Google Scholar 

  42. Duan G Q, Wang D W, Ma X Y. Three-dimensional imaging via wideband MIMO radar system. IEEE Geos Remote Sens Lett, 2010, 7: 445–449

    Article  ADS  Google Scholar 

  43. de Jong C D, Lachapelle G, Skone S. Multibeam Sonar Theory of Operation. Delft: Delft University Press, 2002. 4-19–4-21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Sun, C., Yi, F. et al. Underwater three-dimensional imaging using narrowband MIMO array. Sci. China Phys. Mech. Astron. 56, 1346–1354 (2013). https://doi.org/10.1007/s11433-013-5117-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5117-2

Keywords

Navigation